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a b s t r a c t 

Motivated by requirements in the process industries, the largest user of model predictive control, we 

re-examine some features of recent research on this topic. We suggest that some proposals are too com- 

plex and computationally demanding for application in this area and make some tentative proposals for 

research on robust and stochastic model predictive control to aid applicability 

© 2016 International Federation of Automatic Control. Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

My purpose in this paper is not to present some new theory 

or procedure; rather my aim is to discuss some difficulties or ob- 

stacles that impede the successful application of Model Predic- 

tive Control. These difficulties are both theoretical and practical. 

Our subject now has an excellent foundation created by many re- 

searchers. This foundation is not threatened. However, in my opin- 

ion, some research does not address industrial needs sufficiently 

well and there are some topics for which more research is needed. 

Using a recent review ( Mayne, 2014 ) and a recent paper on model 

predictive control in industry ( Forbes, Patwardham, Hamadah, & 

Gopulani, 2015 ) some areas of current research that need further 

attention or redirection are described. Main attention is given to 

robust and stochastic model predictive control because these forms 

of control often require the on-line solution of complex optimal 

control problems. 

The main focus of his paper is on applications in the process in- 

dustry because the size of the problems routinely considered there 

makes it difficult, if not impossible, to implement some control 

algorithms currently proposed for robust and/or stochastic model 

predictive control. Each installation in the process industries dif- 

fers, at least in some respects, from its predecessors and has to be 

separately commissioned. Thereafter it is usually left in the con- 

trol of an operator who maintains the plant and who needs to 

understand the plant and its controller. The situation is very dif- 

ferent in other areas. As pointed out in Di Cairano (2012) , in the 

automotive industry ‘each control design is employed in hundreds 

or even thousands of final products’ referred to as ‘large volumes 

application domains’. The systems in this domain typically have a 

much smaller state dimension, are much faster, the resultant con- 

E-mail address: d.mayne@imperial.ac.uk 

trollers are unsupervised, have to be much cheaper, and consider- 

ably more expert effort can be devoted to each control design mak- 

ing some of the criticisms of current research levelled in this paper 

irrelevant. 

2. Background 

The system to be controlled is usually described by 

x + = f (x, u ) (1) 

if there is no disturbance or by 

x + = f (x, u, w ) (2) 

if a disturbance w is present. The state x ∈ R 

n , the control u ∈ 

R 

r and the disturbance w ∈ R 

p ; it is assumed in the sequel that 

E(w ) = 0 . Model uncertainty is described in the usual way by 

x + = f (x, u, w ) 

y = h (x ) (3) 

w = �(y t (·)) (4) 

� is a causal input-output operator representing the unmodelled 

dynamics with input y ( ·) and output w; � does not necessarily 

have a finite-dimensional state representation. 

The output y ∈ R 

s and � is an operator representing the un- 

modelled dynamics that, at time t , maps the output sequence 

y t � { . . . , y (−2) , y (−1) , y (0) , y (1) , . . . , y (t) } into w ( t ). The system 

is usually subject to some constraints, i.e. the control u is required 

to lie in a compact set U ⊂ R 

m and the state may be required to lie 

in a closed set X ⊂ R 

n . The equilibrium (target) state-control pair 

( ̄x , ū ) is required to be such that ( ̄x , ū ) lies in the interior of X × U . 

In addition the state x is required to lie in the closed set X ⊂ R 

n . 

The finite horizon optimal control problem P N (x ) solved on-line ( N 

is the horizon) may require the terminal state to lie in the compact 
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set X f ⊂ R 

n ; this is a constraint on the optimal control problem 

and is not a system constraint. In robust model predictive control it 

is assumed that the disturbance w takes values in the compact set 

W ⊂ R 

p that contains the origin in its interior. In stochastic model 

predictive control { w ( t )} is a random process, a sequence of inde- 

pendent, identically distributed random variables taking values in a 

set W ⊂ R 

p that is not necessarily compact. In the stochastic case 

it is assumed that there is an underlying probability space with 

probability measure P . 

The decision variable for the optimal control problem varies 

considerably. In conventional model predictive control in which 

the system is described by (1) , the decision variable is the con- 

trol sequence u = { u (0) , u (1) , . . . , u (N − 1) } ∈ R 

Nm ; this is one of 

the big attractions of model predictive control since off-line de- 

termination of a control law κ : R 

n → R 

m , a complex task, is 

replaced by on-line determination of a control sequence u for 

each encountered value of the state x . The decision variable u is 

also employed fairly often in the literature on robust on stochas- 

tic model predictive control. In order to overcome the disadvan- 

tages, discussed below, of using u as a decision variable for ro- 

bust or stochastic model predictive control, a feedback policy π � 

{ μ0 (·) , μ1 (·) , . . . , μN−1 (·) } , a sequence of measurable control laws, 

is also employed; for each i , μi : R 

n → R 

m . Optimizing over ar- 

bitrary functions is too complex so π is often parameterized by 

a vector v = (v 0 , v 1 , . . . , v N−1 ) with μi ( x ) � θ ( x, v i ); e.g. θ (x, v i ) = 

∑ 

j∈ J v 
j 
i 
φ j (x ) in which { φj ( ·) | j ∈ J } is a set of pre-specified func- 

tions. When the system f ( ·) is linear, a common choice is μi (x ) = 

θ (x, v i ) = v i + Kx, K chosen so that A + BK is stable, a parameteri- 

zation suggested by Rossiter, Kouvaritakis, and Rice (1998) . The de- 

cision variable u may be regarded as a degenerate policy in which 

μi (x ) = θ (x, v i ) = v i = u i for all i , all x . Let � denote the class of 

policies π defined above, i.e. � � { π = { μ0 (·) , μ1 (·) , . . . , μN−1 (·) | 
μi (x ) = θ (x, v i ) , i = 0 , 1 , . . . N − 1 } . Optimizing with respect to π ∈ 

� is equivalent to optimizing with respect to the vector sequence 

v = { v 0 , v 1 , . . . , v N−1 } . 
2.1. Definition of cost function V N ( x , u ) or V N ( x, π ) 

For nominal model predictive control, in which the system is 

assumed to satisfy (1) , x u ( i ; x ) denotes the solution of (1) at time 

i given that the initial state is x at time 0 and the control is u . For 

robust or stochastic model predictive control, in which the system 

is assumed to satisfy (2) , x π ( j ; x , w ) denotes the solution of 

x (i + 1) = f (x (i ) , μi (x (i )) , w (i )) , i = 0 , 1 , . . . , N − 1 (5) 

at time j given that the initial state is x (0) = x and the control 

policy is π = { μ0 (·) , μ1 (·) , . . . , μN−1 (·) } ∈ �. The definition of cost 

depends on the type of model predictive control: conventional, ro- 

bust or stochastic: 

1. Conventional MPC: 

V N (x, u ) � 

N−1 ∑ 

i =0 

� (x u (i ; x ) , u (i )) + V f (x u (N; x )) (6) 

2a. Robust MPC – Nominal cost: 

V N (x, π) � 

N−1 ∑ 

i =0 

� (x π (i ; x, 0 ) , μi (x π (i ; x, 0 )) + V f (x π (N; x, 0 )) 

(7) 

2b. Robust MPC – Worst case cost: 

V N (x, π) � max 
w ∈ W 

N 

N−1 ∑ 

i =0 

� (x π (i ; x, w ) ,μi (x π (i ; x, w )) 

+ V f (x π (N; x, w )) (8) 

in which 0 � { 0 , 0 , . . . , 0 } is a sequence of zero vectors. 

3a. Stochastic MPC – Nominal cost: 

V N (x, π) � 

N−1 ∑ 

i =0 

� (x π (i ; x, 0 ) , μi (x π (i ; x, 0 )) + V f (x π (N; x, 0 ) 

(9) 

3b. Stochastic MPC – Expected cost: 

V N (x, π) � E | x 
N−1 ∑ 

i =0 

� (x π (i ; x, w ) ,μi (x π (i ; x, w )) 

+ V f (x π (N; x, w )) (10) 

in which E | x ( ·) � E ( ·| x ) and E is expectation under P , the proba- 

bility measure of the underlying probability space. 

2.2. Definition of constraint set U N (x ) or �N ( x ) 

Constraints also depend on the type of model predictive control 

that is employed: 

1. Nominal MPC: For each x , U N (x ) is the set permissible control 

sequences u . Each u ∈ U N (x ) satisfies: 

u (i ) ∈ U , x u (i ; x ) ∈ X , ∀ i ∈ I 0: N−1 , x u (N; x ) ∈ X f (11) 

It is assumed here and in the sequel that X f ⊂ X . 

2. Robust MPC: For each x, �N ( x ) is the set of permissible control 

policies. Each π = { μ0 (·) , μ1 (·) , . . . , μN (·) } ∈ �N (x ) satisfies: 

μi (x π (i ; x, w )) ∈ U , x π (i ; x, w ) ∈ X , ∀ (i, w ) ∈ I 0: N−1 × W 

N , 

x π (N; x, w ) ∈ X f , ∀ w ∈ W 

N (12) 

in which I a : b � { a, a + 1 , . . . , b − 1 , b} . 
3. Stochastic MPC: Because the probability density of the distur- 

bance w does not have finite support, it is impossible to sat- 

isfy the state and terminal constraints almost surely. To ob- 

tain a meaningful optimal control problem, it is necessary to 

‘soften’ the state and terminal constraints. For process control 

applications, the control constraint must always be satisfied, a 

requirement sometimes ignored in the literature. Two methods 

for ‘softening’ the constraint have been used in the literature. In 

the first ( Primbs & Sung, 2009 ), ‘hard’ constraints of the form 

x (w ) ∈ X for all w ∈ W are replaced by the average constraint 

E(x (w )) ∈ X . In the second ( Kouvaritakis, Cannon, Rakovi ́c, & 

Cheng, 2010; Prnadini, Garatti, & Lygeros, 2012 ) the constraint 

x (w ) ∈ X for all w ∈ W is replaced by P (x (w ) ∈ X ) ≥ 1 − ε for 

some ε ∈ (0, 1). Hence, the constraints employed in the opti- 

mal control problem solved on-line take the form 

μi (x π (i ; x, w )) ∈ U , E | x (x π (i ; x, w )) ∈ X ∀ i ∈ I 0: N−1 , 

E | x (x π (N; x, w )) ∈ X f ) ∀ w ∈ W 

N , (13) 

in which E | x ( ·) � E (( ·) | x ) when average constraints are employed, 

or 

μi (x π (i ; x, w )) ∈ U , P | x (x π (i ; x, w )) ∈ X ) ≥ 1 − ε, 

∀ i ∈ I 0: N−1 , P | x (x π (N; x, w )) ∈ X f ) ≥ 1 − ε ∀ w ∈ W 

N (14) 

in which P | x ( ·) � P ( ·| x ) when probabilistic constraints are em- 

ployed. Let �N ( x ) denote the set of policies π ∈ � satisfying 

the appropriate constraints, average or probabilistic. The possi- 

bility of satisfying the hard control constraint, which is neces- 

sary in process control applications, is discussed below. 

2.3. Definition of nominal optimal control problem P N ( x ) 

For nominal model predictive control, the optimal control prob- 

lem, P N ( x ), that is solved on-line is: 

P N (x ) : V 

0 
N (x ) = min 

u ∈U N (x ) 
V N (x, u ) (15) 
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