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Abstract: We consider the problem of boundary stabilization for a system of n coupled parabolic
linear PDEs of the reaction-diffusion-advection type. Particularly, we design a state-feedback law with
Dirichlet-type actuation on only one end of the domain and prove exponential stability of the closed-loop
system with an arbitrarily fast convergence rate. The backstepping method is used for controller design,
and the transformation kernel matrix is derived by using the method of successive approximations to
solve the corresponding PDE. Simulation results support the effectiveness of the suggested design.
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1. INTRODUCTION

In this paper, the boundary stabilization of a class of coupled
linear Reaction-Diffusion-Advection (RDA) Partial Differen-
tial Equations (PDEs) is tackled by exploiting the so-called
“backstepping” approach (see Smyshlyaev et al. (2008); Krstic
et al. (2004)).

Backstepping-based boundary controllers for several classes
of scalar reaction-diffusion processes were presented, e.g., in
Krstic et al. (2008); Liu (2003); Krstic et al. (2004). Scalar
RDA processes are usually dealt with by resorting to a certain
invertible transformation that removes the advection term from
the PDE (see Smyshlyaev et al. (2008))), thus reducing the
problem to that of stabilizing the resulting scalar reaction-
diffusion PDE. As discussed in the Remark 1, this procedure
can be applied to coupled RDA processes only when special
restrictions on the corresponding parameters are in force, thus
motivating the investigation of alternative solutions.

In recent years, the backstepping-based boundary stabiliza-
tion of coupled PDEs is under intensive study (see Di Meglio
et al. (2013); Vazquez et al. (2011); Di Meglio et al. (2012);
Aamo (2013); Coron et al. (2011)) mostly referring to cou-
pled hyperbolic processes of the transport-type. More recently,
the boundary stabilization of linear coupled reaction-diffusion
PDEs was addressed under the restriction that all the coupled
processes possess the same diffusivity parameters (see Baccoli
et al. (2014)) and in the general case in Baccoli et al. (2015a).
These two distinct scenarios, indeed, imply deep differences in
the solvability of the resulting kernel PDE.

The task of the present paper is to generalize the results pre-
sented in Baccoli et al. (2014) by including the advection term
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in the resulting system of coupled PDEs. The motivation to
this investigation comes from chemical processes Orlov et al.
(2002) where such equations occur to describe system dynam-
ics, e.g., coupled temperature-concentration parabolic PDEs.
As shown in the paper, this generalization is far from being
trivial because the underlying backstepping-based treatment
gives rise to a kernel PDE with completely different bound-
ary conditions than those obtained in Baccoli et al. (2014),
and whose solution in explicit form cannot be found anymore.
Additionally, preliminary investigations seem to suggest that
when all processes possess their own diffusivity and advection
coefficients the problem of boundary stabilization is unsolv-
able through the backstepping route. In this paper we therefore
address the simplified case where all processes have the same
diffusivity parameter, and we postpone to next investigation the
more careful study of the general case.

The structure of the paper is as follows. Section II states
the problem under investigation and introduces the underlying
backstepping transformation. In Section III the solution of the
kernel PDE is tackled, whereas in Section IV the proposed
boundary control design and main stability result of this paper
are drawn. Section V gives some concluding remarks and future
perspectives of this research.

1.1 Notation

The notation used throughout is fairly standard. L2(0, 1) stands
for the Hilbert space of square integrable scalar functions z(ζ)
on (0, 1) and the corresponding norm

�z(·)�2 =

√
∫ 1

0

z2(ζ)dζ. (1)

Throughout the paper we shall also utilize the notation

[L2(0, 1)]
n
=

L2(0, 1)× L2(0, 1)× . . .× L2(0, 1)
︸ ︷︷ ︸

n times
, (2)
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and

�Z(·)�2,n =

√
√
√
√

n∑

i=1

�zi(·)�22 (3)

for the corresponding norm of a generic vector functionZ(ζ) =
[z1(ζ), z2(ζ), ...., zn(ζ)] ∈ [L2(0, 1)]

n
. In denotes the identity

matrix of dimension n.

2. PROBLEM FORMULATION AND BACKSTEPPING
TRANSFORMATION

We consider a n-dimensional system of coupled reaction-
advection-diffusion processes, equipped with Dirichlet-type
boundary conditions, governed by the next vector-valued PDE

Qt(x, t) = θQxx(x, t) +DQx(x, t) + ΛQ(x, t) (4)

Q(0, t) = 0, (5)

Q(1, t) =U(t) (6)

where

Q(x, t) = [q1(x, t), q2(x, t), . . . , qn(x, t)]
T ∈ [L2(0, 1)]

n

(7)

is the vector collecting the state of all systems,

U(t) = [u1(t), u2(t), . . . , un(t)]
T
∈ ℜn (8)

is the vector collecting all the manipulable boundary control
signals, Λ = {λij} ∈ ℜn×n is the real-valued “reaction”
matrix, D ∈ ℜn×n is the diagonal “advection” matrix having
the form D = diag(di), with di > 0 ∀i = 1, 2, ..., n, and
θ ∈ ℜ+ is a positive scalar. The open-loop system (4)-(6) (with
U(t) = 0) possesses arbitrarily many unstable eigenvalues
when the matrix Λ + ΛT possesses sufficiently large positive
eigenvalues.

Remark 1. Under the restriction

d1 = d2 = . . . = dn ≡ d, (9)

the invertible change of variables

W (x, t) = Q(x, t)e
d
2θ

x (10)

can be implemented which, after straightforward manipula-
tions, analogous to those made in Smyshlyaev et al. (2008) to
address the scalar case when n = 1, yields the advection-free
transformed system of coupled PDEs

Wt(x, t) = θWxx(x, t) +

[

Λ−
d2

4θ
In

]

W (x, t) (11)

W (0, t) = 0, (12)

W (1, t) =U(t)e
d
2θ (13)

whose stabilization can be addressed by following the proce-
dure described in Baccoli et al. (2014). In the general case
where the condition (9) is not fulfilled, such an approach is not
feasible and another solution has to be found, which is the main
goal of the present paper.

Here, we exploit the invertible backstepping transformation

Z(x, t) = Q(x, t)−

∫ x

0

K(x, y)Q(y, t)dy (14)

where K(x, y) is a n × n matrix function whose elements
are denoted as kij(x, y) (i, j = 1, 2, . . . , n) to exponentially
stabilize system (4)-(6) by transforming it into the target system

Zt(x, t) = θZxx(x, t) +DZx(x, t) − CZ(x, t) (15)

Z(0, t) = 0, (16)

Z(1, t) = 0, (17)

whereZ(x, t) = [z1(x, t), z2(x, t), . . . , zn(x, t)]
T ∈ [L2(0, 1)]

n

is the corresponding state vector and C = {cij} ∈ ℜn,n is an
arbitrarily chosen real-valued square matrix.

The exponential stability properties of the target system (15)-
(17), whose convergence rate can be made arbitrarily fast by
a suitable choice of the matrix C, are investigated later in
Theorem 2.

Following the usual backstepping design, we now derive and
solve the PDE governing the kernel matrix function K(x, y).
Spatial derivatives Zx(x, t) and Zxx(x, t) take the form (the
Leibnitz differentiation rule is used):

Zx(x, t) =Qx(x, t)−K(x, x)Q(x, t) −

∫ x

0

Kx(x, y)Q(y, t)dy

(18)

Zxx(x, t) =Qxx(x, t)−

[
d

dx
K(x, x)

]

Q(x, t)

−K(x, x)Qx(x, t)−Kx(x, x)Q(x, t)

−

∫ x

0

Kxx(x, y)Q(y, t)dy (19)

where

d

dx
K(x, x) = Kx(x, x) +Ky(x, x)

Kx(x, x) =
∂K(x, y)

∂x

∣
∣
∣
∣
y=x

, Ky(x, x) =
∂K(x, y)

∂y

∣
∣
∣
∣
y=x

.

(20)

Using (4), and applying recursively integration by parts, the
time derivative Zt(x, t) is obtained in the form

Zt(x, t) =Qt(x, t)−

∫ x

0

K(x, y)Qt(y, t)dy

= θQxx(x, t) +DQx(x, t) + ΛQ(x, t)

−K(x, x)θQx(x, t) +K(x, 0)θQx(0, t)

+Ky(x, x)θQ(x, t) −Ky(x, 0)θQ(0, t)

−

∫ x

0

Kyy(x, y)θQ(y, t)dy −K(x, x)DQ(x, t)

+K(x, 0)DQ(0, t) +

∫ x

0

Ky(x, y)DQ(y, t)dy

−

∫ x

0

K(x, y)ΛQ(y, t)dy. (21)

Combining (14), (19), (21) and performing lengthy but straight-
forward computations, yield
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