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a b s t r a c t

The paper addresses the single range observability analysis of a kinematics model of cooperating underac-

tuated underwater vehicles. Teams of underwater vehicles that communicate with each other may be able

to access and exchange their relative distances through, by example, acoustic signal time-of-flight measure-

ments. Such relative distance measurements together with vehicle’s attitude and velocity information may

be used onboard to implement a navigation filter to estimate the vehicle’s relative positions and orientations.

A pre-requisite for successfully designing such navigation filters is to assess the systems observability prop-

erties. Contrary to the majority of existing studies on single range observability, the paper considers a more

realistic underactuated kinematics model for slender body autonomous underwater vehicles rather than a

simple point mass model. The paper extends previous results building on an augmented state technique

allowing to reformulate the nonlinear observability problem in terms of a linear time varying one. As a re-

sult, all possible (globally) unobservable motions are characterized in terms of the systems’ initial conditions

and velocity commands within the class of interest. The fundamental results reported are also illustrated by

numerical simulations providing evidence of different motions generating the same output, namely lacking

observability.

© 2015 International Federation of Automatic Control. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Multi robot systems in air, land and marine applications have re-

ceived an increasing amount of attention in last years. Indeed many

applications as sampling (Antonelli, Chiaverini, and Marino, 2012 and

references therein), surveillance, mapping and exploration can ben-

efit in robustness and coverage by exploiting cooperating teams of

robots rather than single vehicle systems. In particular, research effort

is targeting the issue of designing distributed and cooperative control

schemes minimizing the need of a centralized team controller. Dis-

tributed motion control architectures for cooperative robots require,

in general, that the team members share some knowledge about their

relative states: typically the relative positions (and eventually veloc-

ities) need to be known among neighboring vehicles in order to ac-

complish cooperative motion. In several applications, as underwater

ones where sensors are mostly based on acoustics, team members

can measure their relative distances only (Soares, Aguiar, Pascoal, &

Gallieri, 2012). This poses a remarkable problem of observability (also

known as single beacon navigation in the literature): given a kine-

matics model of, say, two vehicles, will their relative position and ori-
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entation (pose) be observable based on relative Euclidean distance

measurement only? As the Euclidean distance is a nonlinear function

of the relative position vector, the observability problem is nonlin-

ear even for point mass (linear) kinematics model as in Arrichiello,

Antonelli, Aguiar, and Pascoal (2011). Single beacon navigation prob-

lems have been addressed in the area of wheeled mobile robotics

for relative localization (refer to Martinelli and Siegwart (2005) and

Zhou and Roumeliotis (2008), for example). With reference to marine

robotics applications, the issue of single beacon navigation (and ob-

servability analysis) has been addressed by several authors including

Arrichiello et al. (2011), Bahr (2009), Bahr, Leonard, and Fallon (2009),

Batista, Silvestre, and Oliveira (2011), Bayat (2015), Bayat, Crasta,

Aguiar, and Pascoal (2015), Fallon, Papadopoulos, Leonard, and Pa-

trikalakis (2010), Gadre and Stilwell (2004), Jouffroy and Ross (2005),

Jouffroy and Reger (2006), Olson, Leonard, and Teller (2004), Quenzer

and Morgansen (2014), Webster, Eustice, Singh, and Whitcomb (2013)

and Webster, Whitcomb, and Eustice (2010). These studies focus on

simple (point-mass like) kinematic models often in 2D only. The ob-

servability issues arising in single beacon navigation are similar to

the observability properties of tracking systems. Although tracking

systems are more often based on bearing only measurements, the

problem of tracking through range-only measurements has received

some attention also in oceanic engineering applications (Maki, Mat-

suda, Sakamaki, Ura, & Kojima, 2013; Song, 1999).
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Based on a recent approach to address the global observability of

a system model made of two underactuated vehicles, this paper ex-

tends previous results (Parlangeli & Indiveri, 2014; Parlangeli, Pedone,

& Indiveri, 2012) by including the case where both vehicles have con-

stant, but non null, linear and angular velocities. From a methodolog-

ical point of view, the proposed observability analysis is inspired by

the work of Batista, Silvestre, and Oliveira (2010) and Batista et al.

(2011) where a similar single range observability issue has been ad-

dressed for a different (point-mass) kinematics model.

In Section 2 the system model is illustrated and the observabil-

ity problem is defined. In Section 3 the adopted observability tools

and methods are described whereas the main results of the analy-

sis are reported in Section 4. Simulation results providing numerical

evidence of unobservable trajectories are illustrated in Section 5 and

conclusions are finally addressed in Section 6. An Appendix section

with a few technical results is also included after the Bibliography.

2. System model

2.1. Notation

Vectors are denoted with lower case boldface fonts and matrices

with capital roman letters. Reference frames are labeled as <1>, <2>,

etc. Given a vector p ∈ R
3 its representation in frame <1> will be

denoted as 1p having components of (1p)1, (1p)2, (1p)3. The norm of

vector p will be equivalently indicated with ‖p‖ or p. The unit vector

of p �= 0, namely p/‖p‖, will be indicated with p̌. The set of all unit

vectors in R
3 will be denoted by S

2. The special orthogonal group of

3D rotation matrices is SO(3) and the rotation matrix between frames

<2> and <1> will be indicated with 1R2 such that 1p = 1R2
2p. The 3D

skew symmetric matrix associated to vector product will be indicated

with S(a), namely for any a = (a1, a2, a3)
� ∈ R

3

S(a) :=
(

0 −a3 a2

a3 0 −a1

−a2 a1 0

)
∈ R

3×3 (1)

such that S(a)b = a × b. A dot on a variable (either a scalar a vector

or a matrix) indicates its time derivative. The angular velocity vector

associated to the rotation matrix 1R2 is defined as the axial vector

satisfying

1Ṙ2
1R

�
2 = S(1ω2/1) (2)

namely 1ω2/1 is the angular velocity of frame <2> with respect to

frame <1> expressed in frame <1>. The symbol ⊗ will be used for

the Kronecker product (Laub, 2005) between two matrices, namely

given A ∈ R
m×n and B ∈ R

p×q the matrix A ⊗ B ∈ R
mp×nq is defined

as:

A ⊗ B =

⎡
⎣a11B . . . a1nB

...
. . .

...
am1B . . . amnB

⎤
⎦ (3)

and ⊕ denotes the Kronecker sum (Laub, 2005) such that for any two

square matrices C ∈ R
n×n and D ∈ R

m×m the matrix (C ⊕ D) ∈ R
mn×mn

is defined as

C ⊕ D = (Im×m ⊗ C) + (D ⊗ In×n) (4)

where Il×l ∈ R
l×l is the l-dimensional identity matrix for any nonneg-

ative integer l. The columns of Il × l will be denoted with e1, e2, . . . , el .

We denote with j the imaginary unit. The set of unobservable vectors

is denoted with Xno.

2.2. Vehicles model

The kinematics model considered is a 3D underactuated vehicle

(as a torpedo shaped submersible, a missile or airplane) having a lin-

ear velocity with an arbitrarily assigned norm and direction along a

Fig. 1. Geometry of the problem.

unit vector (usually the surge direction) that can be rotated with a de-

sired angular velocity. Mathematically this simple model is captured

by the following equations:

q̇ = u h : ‖h‖ = 1 (5)

ḣ = ω × h (6)

where q is the position (with respect to an earth-fixed frame) of the

origin of a body-fixed frame, h is the unit vector of its linear velocity

having norm |u| and ω is its angular velocity. Eqs. (5) and (6) define a

kinematics control system with state vector x = (q�, h�)� ∈ R
3 × S

2

and inputs u ∈ R and ω ∈ R
3. This nonlinear model can be viewed as

the 3D version of the classical planar unicycle nonholonomic model

in 2D. Notice that while many torpedo shaped autonomous underwa-

ter vehicles (AUVs) cannot turn on the spot due to the use of control

surfaces (only) for the angular velocity actuation, some AUVs (Caffaz,

Caiti, Casalino, & Turetta, 2010) are equipped with side thrusters that

allow to actively control pitch and yaw velocities also at zero surge.

Indeed the vehicles considered in this paper are of the latter kind

(Caffaz et al., 2010), hence the input angular velocity ω in Eq. (6) will

be assumed to be independent of the surge speed u. Moreover, al-

though Eq. (6) does not pose constraints on the roll component ω�h

the fact that such component might not be actuated does not limit the

generality of the observability analysis developed in the reminder of

the paper.

With reference to Fig. 1 consider an earth fixed frame <0> and

two body fixed (moving) frames <1> and <2> having origin in p1

and p2 respectively. Frames <1> and <2> are assumed to move ac-

cording to the kinematics equations:

0ṗi(t) = ui(t) 0hi(t), ‖0hi(t)‖ = 1 (7)

0ḣi(t) = 0ωi/0(t) × 0hi(t) (8)

for i = 1, 2. In accordance to the discussion of the model in Eqs. (5)

and (6), ui and ωi/0 are the linear and angular velocities respectively

of the two systems and hi are two unit vectors. We assume that u1(t)

and u2(t) cannot be identically zero at the same time. Without loss

of generality, in the following it will be assumed that ihi is the x−
axis unit vector of frame <i>, namely ihi = ie1 = (1, 0, 0)�. Denoting

with

p := p2 − p1 (9)

the relative position of frame <2> with respect to <1>, we are in-

terested in analyzing the motion of the vehicle <2> as viewed by the

observing vehicle <1> : standard kinematics calculations based on

the projection of Eqs. (7) and (8) on frame <1> lead to the follow-

ing:

1ṗ(t) = u1
2(t)h2(t) − u1

1(t)h1(t) − S(1ω1/0(t)) 1p(t) (10)

1ḣ1(t) = 0 (11)

1ḣ2(t) = S(1ω2/1(t)) 1h2(t). (12)
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