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a b s t r a c t

A novel implicit iterative algorithm is presented via successive over relaxation (SOR) iterations in this
paper for solving the coupled Lyapunov matrix equation related to continuous-time Markovian jump
linear systems. This algorithm contains a relaxation parameter, which can be appropriately chosen to
improve the convergence performance of the algorithm. It has been shown that the sequence generated
by the proposed algorithm with zero initial conditions monotonically converges to the unique positive
definite solution of the considered equation. Moreover, some convergence results of the presented SOR
implicit iterative algorithm with arbitrary initial conditions are established, and a method to choose the
optimal relaxation parameter for this algorithm is given. Finally, two examples are provided to illustrate
the effectiveness of the proposed algorithm.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Coupled Lyapunov matrix equations (CLMEs) appear in the
stability analysis of continuous-time Markovian jump linear sys-
tems. In Mariton (1988), the moment stability was discussed by
the existence of unique positive definite solutions of the CLMEs.
A necessary and sufficient condition was given by Ji and Chizeck
(1990) for the stochastic stability of continuous-time Markovian
jump systems in terms of the corresponding CLMEs. It was shown
in Feng, Loparo, Ji, and Chizeck (1992) that the stochastic stability
of jump linear systems can be characterized by the existence of
unique positive definite solutions of the CLMEs.

Due to the aforementioned facts, the CLMEs have received
considerable attention, and many effective algorithms have been
proposed to solve them. In Jodar and Mariton (1987), the CLMEs
were transformed into matrix–vector linear equations by using
the Kronecker product, and its solutions can be directly obtained.
However, thismethod suffers fromhighdimensionality. In Li, Zhou,
Lam, and Wang (2011), some iterative algorithms were presented
to solve the CLMEs associated with Itô Markovian jump stochastic
systems. A parallel iterative algorithm was given by Borno (1995)
to approximate the solutions of the continuous CLMEs. By apply-
ing the latest estimation some implicit iterative algorithms were
developed by Wu and Duan (2015) to solve the discrete CLMEs
and by Qian and Pang (2015) for solving the continuous CLMEs.
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The algorithm in Qian and Pang (2015) is a sequential version of
the algorithm in Borno (1995). This is similar to Gauss–Seidel iter-
ations vs Jacobi iterations for ordinary linear equations (Trefethen
& Bau, 1997). Recently, by introducing some tunable parameters,
an implicit iterative algorithm was developed by Wu, Duan, and
Liu (2016) for solving the continuous CLMEs. It is known that the
successive over relaxation (SOR) technique is a classical method
for improving the convergence rate of the Jacobi iterations (Young,
2014). The SOR technique was used by Wu, Zhang, and Zhang
(2018) to solve the discrete periodic Lyapunov matrix equations.

Inspired by the above facts, in this paper we aim to estab-
lish a novel iterative algorithm for solving the CLMEs related to
continuous-timeMarkovian jump linear systems by using the idea
of the SOR technique for the ordinary linear equations. First, the
matrix equation is transformed into an equivalent form by intro-
ducing a relaxation parameter. Then, based on the transformed
form a novel iterative algorithm, the SOR implicit iterative algo-
rithm, is constructed for solving this kind of coupled Lyapunov
matrix equations. Different from the algorithm in Qian and Pang
(2015), a relaxation parameter is introduced in the proposed al-
gorithm. This parameter can be chosen such that the algorithm
achieves better convergence performance. Some convergence re-
sults of the presented SOR implicit iterative algorithm are estab-
lished. In addition, an explicit expression is derived for the optimal
relaxation parameter such that the algorithm achieves the fastest
convergence rate. In addition, an easier method is proposed to
compute the optimal parameter for a special case.

Throughout this paper, for a matrix A ∈ Rn×n, AT, fA(s), and
ρ (A) denote its transpose, characteristic polynomial and spectral
radius, respectively, and σ (A) denotes the set of all its eigenvalues.
For two integers a ≤ b, the notation I[a, b] is defined as I[a, b] =
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{a, a + 1, . . . , b} . The vectorization of amatrixA = [a1 a2 · · · an] ∈

Rm×n is defined as vec (A) = [aT1 aT2 · · · aTn]
T. The notation ⊗ rep-

resents the Kronecker product of two matrices, and ∥·∥2 and ∥·∥F
refer to the spectral norm and the Frobenius norm, respectively.
Moreover, for two symmetric matrices X, Y ∈ Rn×n, we write
X < Y if X − Y is negative definite. It should be mentioned that,
the sum is defined as zero if the upper limit of the sum notation is
less than the lower limit.

2. Preliminaries and previous results

Consider a continuous-time Markovian jump linear system de-
scribed by

ẋ (t) = Aρ(t)x(t), (1)

where x(t) ∈ Rn is the state vector, ρ (t) is a time homogeneous
Markovian process that takes values in a finite discrete set S =

{1, 2, . . . ,N}. For the Markovian jump linear system (1), the sys-
temmatrices ofN subsystems areAi, i ∈ I[1,N]. The dynamic of the
probability distribution of the Markovian chain is determined by

ϕ̇ = ϕΠ, (2)

whereϕ is anN-dimensional rowvector of unconditional probabil-
ities, andΠ = [πij]N×N is the transition ratematrix. Thismatrix has
the properties that πij ≥ 0 for j ̸= i, and

∑N
j=1πij = 0, i ∈ I[1,N].

It has been known that the stochastic stability of theMarkovian
jump linear system (1)–(2) can be characterized by the existence
of the unique positive definite solutions of the associated CLMEs.

Proposition 1 (Ji & Chizeck, 1990). The Markovian jump linear
system (1)–(2) is stochastically stable if and only if there exist unique
positive definite matrices Pi, i ∈ I[1,N], satisfying the following
CLMEs:

AT
i Pi + PiAi +

N∑
j=1

πijPj = −Qi, i ∈ I[1,N], (3)

where Qi, i ∈ I[1,N], are arbitrarily given positive definite matrices.
Similarly to the treatment in Borno (1995), the CLMEs (3) can

be equivalently expressed as

AT
i Pi + PiAi = −Qi −

i−1∑
j=1

πijPj −
N∑

j=i+1

πijPj, i ∈ I[1,N], (4)

with

Ai = Ai + 0.5πiiI , i ∈ I[1,N]. (5)

By Proposition 1, the following result can be easily derived from (4).

Proposition 2. For any i ∈ I[1,N], the matrix Ai in (5) is Hurwitz
stable if the Markovian jump linear system (1)–(2) is stochastically
stable.

Based on (4), two implicit iterative algorithms have been pro-
posed by Borno (1995) and (Qian & Pang, 2015) to solve the
CLMEs (3).

Lemma 1 (Borno, 1995). Given the stochastically stable Markovian
jump linear system (1)–(2), and positive definite matrices Qi > 0, i ∈

I[1,N], the unique solution (P1, P2, . . . , PN ) of the corresponding
CLMEs (3) can be obtained by the following iterative algorithm with
Pi (0) = 0, i ∈ I[1,N]:

AT
i Pi (m + 1) + Pi (m + 1)Ai

= −

i−1∑
j=1

πijPj (m) −

N∑
j=i+1

πijPj (m) − Qi, i ∈ I[1,N]. (6)

That is, limm→∞Pi(m) = Pi, i ∈ I[1,N].

Lemma 2 (Qian & Pang, 2015). If the Markovian jump linear system
(1)–(2) is stochastically stable, then the sequence (P1 (m) , P2 (m) ,

. . . , PN (m)) generated by the following algorithm with zero initial
conditions

AT
i Pi (m + 1) + Pi (m + 1)Ai (7)

= −

i−1∑
j=1

πijPj (m + 1) −

N∑
j=i+1

πijPj (m) − Qi, i ∈ I[1,N],

monotonically converges to the unique positive definite solution of the
CLMEs (3) with Qi > 0, i ∈ I[1,N].

For the algorithms (6) and (7), at each iteration step one needs
to solve N standard continuous Lyapunov matrix equations in the
form of ATX + XA = −Q . Therefore, these two algorithms are in
the implicit form.

3. Main results

In this section, we aim to give a novel implicit iterative algo-
rithm to solve the CLMEs (3) by using the idea of the successive
over relaxation (SOR) technique. For this end, we begin with a very
simple identity. For the matrices Ai, i ∈ I[1,N], in (5) and a scalar
γ , the following relations hold

AT
i Pi + PiAi

= (1 − γ )
(
AT

i Pi + PiAi
)
+ γ

(
AT

i Pi + PiAi
)
, i ∈ I[1,N]. (8)

In the preceding section, it is known that the CLMEs (3) can be
written as (4). Substituting (4) into the first term on the right-hand
side of (8), gives

AT
i Pi + PiAi

= (1 − γ )

⎛⎝−

i−1∑
j=1

πijPj −
N∑

j=i+1

πijPj − Qi

⎞⎠
+ γ

(
AT

i Pi + PiAi
)
, i ∈ I[1,N]. (9)

With the idea of using the latest updated estimation in Wu and
Duan (2015) in mind, from the preceding relations in (9) the
following implicit iterative algorithm can be constructed to solve
the CLMEs (3):

AT
i Pi (m + 1) + Pi (m + 1)Ai

= (1 − γ )

⎡⎣−

i−1∑
j=1

πijPj (m + 1) −

N∑
j=i+1

πijPj(m) − Qi

⎤⎦
+ γ [AT

i Pi (m) + Pi (m)Ai], i ∈ I[1,N], (10)

where Ai, i ∈ I[1,N], are given in (5) and γ is the relaxation
parameter.

Remark 1. If the parameter γ is chosen as γ = 0, then the
proposed algorithm (10) is reduced to the algorithm (7).

Remark 2. Similarly to the algorithms (6) and (7), N standard
continuous Lyapunov matrix equations need to be solved at each
iteration step in the presented algorithm (10). Therefore, the algo-
rithm (10) is also in an implicit form.

Remark 3. It could be seen that the relation of the proposed
algorithm (10) with the algorithm in Qian and Pang (2015) is very
similar to that of Gauss–Seidel iterations vs the SOR iterations in
ordinary linear equations. For convenience, in this paper the pro-
posed algorithm (10) is called the SOR implicit iterative algorithm.
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