
Automatica 96 (2018) 11–21

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Fitting jump models✩

Alberto Bemporad a,*, Valentina Breschi b, Dario Piga c, Stephen P. Boyd d

a IMT School for Advanced Studies Lucca, Piazza San Francesco 19, 55100 Lucca, Italy
b Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza L.Da Vinci, 32, 20133 Milano, Italy
c Dalle Molle Institute for Artificial Intelligence Research - USI/SUPSI, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
d Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA

a r t i c l e i n f o

Article history:
Received 25 November 2017
Received in revised form 23 February 2018
Accepted 21 May 2018

Keywords:
Model regression
Mode estimation
Jump models
Hidden Markov models
Piecewise affine models

a b s t r a c t

We describe a new framework for fitting jump models to a sequence of data. The key idea is to alternate
between minimizing a loss function to fit multiple model parameters, and minimizing a discrete loss
function to determine which set of model parameters is active at each data point. The framework is quite
general and encompasses popular classes of models, such as hidden Markov models and piecewise affine
models. The shape of the chosen loss functions to minimize determines the shape of the resulting jump
model.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In many regression and classification problems the training
dataset is formed by input and output observations with time
stamps. However, when fitting the function that maps input data
to output data, most algorithms used in supervised learning do not
take the temporal order of the data into account. For example, in
linear regression problems solved by least squares minθ∥Aθ − b∥22
each row of A and b is associated with a data-point, but clearly the
solution θ ⋆ is the same no matter how the rows of A and b are or-
dered. In system identification temporal information is often used
only to construct the input samples (or regressors) and outputs,
but then it is neglected. For example, in estimating autoregressive
models with exogenous inputs (ARX), the regressor is a finite
collection of current and past signal observations, but the order
of the regressor/output pairs is irrelevant when least squares are
used. Similarly, in logistic regression and support vector machines
the order of the data points does not affect the result. In training
forward neural networks using stochastic gradient descent, the
samples may be picked up randomly (and more than once) by the
solution algorithm, and again their original temporal ordering is
neglected.

✩ Thematerial in this paper was not presented at any conference. This paper was
recommended for publication in revised formbyAssociate Editor Alessandro Chiuso
under the direction of Editor Torsten Söderström.

* Corresponding author.
E-mail addresses: alberto.bemporad@imtlucca.it (A. Bemporad),

valentina.breschi@polimi.it (V. Breschi), dario.piga@supsi.ch (D. Piga),
boyd@stanford.edu (S.P. Boyd).

On the other hand, there are many applications in which rel-
evant information is contained not only in data values but also
in their temporal order. In particular, if the time each data-point
was collected is taken into account, one can detect changes in
the type of regime the data were produced. Examples range from
video segmentation (Chan & Vasconcelos, 2008; Oh, Rehg, Balch,
& Dellaert, 2008) to speech recognition (Rabiner, 1989; Schuller,
Wöllmer, Moosmayr, Ruske, & Rigoll, 2008), asset-price models
in finance (Guidolin, 2011; Timmermann, 2015), human action
classification (Ozay, Sznaier, & Lagoa, 2010; Pavlovic, Rehg, &Mac-
Cormick, 2001), and many others. All these examples are charac-
terized by the need of fitting multiple models and understanding
when switches from one model to another occur.

Piecewise affine (PWA)models attempt at fittingmultiple affine
models to a dataset, where each model is active based on the
location of the input sample in a polyhedral partition of the input
space (Breschi, Piga, & Bemporad, 2016b; Ferrari-Trecate, Muselli,
Liberati, & Morari, 2003). However, as for ARX models, the order
of the data is not relevant in computing the model parameters
and the polyhedral partition. In some cases, mode transitions are
captured by finite statemachines, for example in hybrid dynamical
models with logical states, where the current mode and the next
logical state are generated deterministically by Boolean functions
(Bemporad & Giorgetti, 2006; Breschi, Bemporad, & Piga, 2016a).
In spite of the difficulty of assessing whether a switched linear
dynamical system is identifiable from input/output data (Vidal,
Chiuso, & Soatto, 2002), a rich variety of identification methods
have been proposed in the literature (Bemporad, Garulli, Paoletti, &
Vicino, 2005; Bemporad, Roll, & Ljung, 2001; Breschi et al., 2016b;

https://doi.org/10.1016/j.automatica.2018.06.022
0005-1098/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2018.06.022
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2018.06.022&domain=pdf
mailto:alberto.bemporad@imtlucca.it
mailto:valentina.breschi@polimi.it
mailto:dario.piga@supsi.ch
mailto:boyd@stanford.edu
https://doi.org/10.1016/j.automatica.2018.06.022


12 A. Bemporad et al. / Automatica 96 (2018) 11–21

Ferrari-Trecate et al., 2003; Juloski, Heemels, Ferrari-Trecate, Vi-
dal, Paoletti, & Niessen, 2005; Juloski, Weiland, & Heemels, 2004;
Pillonetto, 2016).

Hidden Markov models (HMMs) treat instead the mode as a
stochastic discrete variable, whose temporal dynamics is described
by a Markov chain (Rabiner, 1989). Natural extensions of hid-
den Markov models consider the cases in which each mode is
associated with a linear function of the input (Costa, Fragoso, &
Marques, 2006; Fridman, 1994; Ohlsson & Ljung, 2013). Hidden
Markov models are usually trained using the Baum–Welch algo-
rithm (Baum, Petrie, Soules, & Weiss, 1970), a forward–backward
version of the more general Expectation–Maximization (EM) algo-
rithm (Dempster, Laird, & Rubin, 1977).

In this paper we consider rather general jump models to fit
a temporal sequence of data that takes the ordering of the data
into account. The proposed fitting algorithm alternates two steps:
estimate the parameters of multiple models and estimate the tem-
poral sequence of model activation, until convergence. The model
fitting step can be carried out exactly when it reduces to a convex
optimization problem,which is often the case. Themode-sequence
step is always carried out optimally using dynamic programming.

Our jumpmodeling framework is quite general. The structure of
the model depends on the shape of the function that is minimized
to obtain themodel parameters, theway themodel jumps depends
on the function that is minimized to get the sequence of model
activation. When we impose no constraints or penalty on the
model sequence, ourmethod reduces to automatically splitting the
dataset in K clusters and fitting one model per cluster, which is
a generalization of K -means (Hastie, Tibshirani, & Friedman, 2009
Algorithm 14.1). HiddenMarkovmodels (HMMs) are a special case
of jumpmodels, aswewill show in the paper. Indeed, jumpmodels
have broader descriptive capabilities than HMMs, for example the
sequence of discrete states may not be necessarily generated by a
Markov chain and could be a deterministic function. Moreover, as
stated above, jumpmodels can have rather arbitrarymodel shapes.

After introducing jump models in Section 2 and giving a sta-
tistical interpretation of the loss function in Section 3, we pro-
vide algorithms for fitting jump models to data and to estimate
output values and hidden modes from available input samples
in Section 4, emphasizing differences and analogies with HMMs.
Finally, in Section 5 we show four examples of application of our
approach for regression and classification, using both synthetic and
experimental datasets.

The code implementing the algorithms described in the paper is
available at http://cse.lab.imtlucca.it/~bemporad/jump_models/.

1.1. Setting and goal

We are given a training sequence of data pairs (xt , yt ), t =
1, . . . , T , with xt ∈ X , yt ∈ Y . We refer to t as the time or period, xt
as the regressor or input, and yt as the outcome or output at time t .
The training sequence is used to build a regressionmodel that pro-
vides a prediction ŷt of yt given the available inputs x1, . . . , xt , and
possibly past outputs y1, . . . , yt−1. We are specifically interested
in models where ŷt is not simply a static function of xt , but rather
we want to exploit the additional information embedded in the
temporal ordering of the data. Aswewill detail later, our regression
model is implicitly defined by the minimization of a fitting loss J
that depends on x1, . . . , xt , y1, . . . , yt−1, yt and other variables and
parameters. The chosen shape for J determines the structure of the
corresponding regression model.

Given a production data sequence (x̃1, ỹ1), . . . , thought to be
generated by a similar process that produced the training data, the
quality of the regression model over a time period t = 1, . . . , T̃
will be judged by the average true loss

Ltrue =
1

T̃

T̃∑
t=1

ℓtrue(ŷt , ỹt ) (1)

where ℓtrue : Y × Y → R penalizes the mismatch between ŷt and
ỹt , with ℓ(y, y) = 0 for all y ∈ Y .

2. Regression models

2.1. Single model

A simple form of deriving a regression model is to introduce a
model parameter θ ∈ Rd, a loss function ℓ : X×Y×Rd

→ R∪{+∞},
and a regularizer r : Rd

→ R ∪ {+∞} defining the fitting objective

J(X, Y , θ ) =
T∑

t=1

ℓ(xt , yt , θ )+ r(θ ) (2a)

where X = (x1, . . . , xT ), Y = (y1, . . . , yT ). For a given training
dataset (X, Y ), let

θ ⋆
= argmin

θ

J(X, Y , θ ) (2b)

be the optimal model parameter. By fixing θ = θ ⋆ and exploiting
the separability of the loss J in (2a) we get the following regression
model

ŷt = argmin
y

J(X, Y , θ ⋆) = argmin
y

ℓ(xt , y, θ ⋆)

=: ϕ(xt ) (2c)

where ϕ : X → Y as the regressionmodel, with ties in the argmin
broken arbitrarily. For example, when ℓ(xt , y, θ ) =

y− θ ′xt
2
2 we

get the standard linear regression model ŷt = θ ′xt .
Model (2c) can be enriched by adding output information sets

Yt ⊆ Y that augment the information that is available about yt ,

ŷt = argmin
y∈Yt

ℓ(x, y, θ ⋆) (3)

where Yt = Y if no extra information on yt is given. For example, if
we knowapriori that yt ≥ 0we can setYt equal to the nonnegative
orthant.

2.2. K-models

Let us add more flexibility and introduce multiple model pa-
rameters θs ∈ Rd, s = 1, . . . , K , and a latent mode variable st
that determines the model parameter θst that is active at step t .
Fitting a K-model on the training dataset (X, Y ), entails choosing
the K models by minimizing

J(X, Y , Θ, S) =
T∑

t=1

ℓ(xt , yt , θst )+
K∑

i=1

r(θi) (4)

with respect to Θ = (θ1, . . . , θK ) and S = (s1, . . . , sT ). The optimal
parameters θ ⋆

1 , . . . , θ
⋆
K define the K -model

(ŷt , ŝt ) = argmin
y,s

ℓ(xt , y, θ ⋆
s ). (5)

Note that the objective function in (4) is used to estimate the
model parameters θ ⋆

1 , . . . , θ
⋆
K based on the entire training dataset,

while (5) defines themodel used to infer the output ŷt and discrete
state ŝt given the input xt , as exemplified in the next section.

2.2.1. K-means and piecewise affine models
The standard K -meansmodel (Hastie et al., 2009) is obtained by

setting yt = xt , r(θ ) = 0, and

ℓ(xt , yt , θst ) =
1
2
∥yt − θst ∥

2
2 +

1
2
∥xt − θst ∥

2
2 = ∥xt − θst ∥

2
2 (6)

In this case, minimizing (4) assigns each datapoint xt to the cluster
indexed by s⋆t , and defines θ ⋆

1 , . . . , θ ⋆
K as the centroids of the

http://cse.lab.imtlucca.it/%7Ebemporad/jump%5Fmodels/


Download English Version:

https://daneshyari.com/en/article/7108100

Download Persian Version:

https://daneshyari.com/article/7108100

Daneshyari.com

https://daneshyari.com/en/article/7108100
https://daneshyari.com/article/7108100
https://daneshyari.com

