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a b s t r a c t

This paper defines a generalized probabilistic linear latent variable model (GPLLVM) that under specific
restrictions reduces to various probabilistic linear models used for process monitoring. For the defined
model, we rigorously derive the monitoring statistics and their respective null distributions. Monitoring
statistics of the defined model also reduce to the monitoring statistics of various probabilistic models
when restricted with the corresponding conditions. The paper presents insightful equivalence between
the classical multivariate techniques for process monitoring and their probabilistic counterparts, which
is obtained by restricting the generalized model. We also provide an estimation approach based on the
expectation maximization algorithm (EM) for GPLLVM. The results presented in the paper are verified
using numerical simulation examples.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Process monitoring ensures product quality, process safety and
equipment reliability of a process. Typically in a process, numer-
ous variables are measured or inferred and archived. Continuous
monitoring of these variableswill ensure desired product quality is
achieved, the operation is within the safe envelope and the health
parameters of the equipment are within the allowable bounds.
In the past few decades, the academic and industrial communi-
ties have shown increasing interest in multivariate techniques for
monitoring (Alcala & Qin, 2009; Chiang, Russell, & Braatz, 2000;
Jiang, Yan, & Huang, 2016; MacGregor & Kourti, 1995; Qin, 2003;
Wise & Gallagher, 1996; Yin, Ding, Haghani, Hao, & Zhang, 2012).
Multivariate techniques are used to characterize the normal opera-
tion of the process from the archived historical data. This is further
used as a reference for monitoring the measured variables online.

Most popular multivariate techniques used for monitoring in-
clude principal component analysis (PCA), factor analysis (FA),
partial least squares (PLS) and canonical correlation analysis (CCA)
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among others (Li, Qin, & Zhou, 2010; Negiz & Çlinar, 1997; Russell,
Chiang, & Braatz, 2000; Wise & Gallagher, 1996; Xia, Howell, &
Thornhill, 2005). They provide a significant dimension reduction
by mapping the high dimension variables onto a lower dimension
latent space. As a result, a few latent variables are obtained to rep-
resent themeasured high dimension variables by retaining the de-
sired characteristics of the high dimension variables. For instance,
PCA provides dimension reduction on the output variables of the
process by retainingmaximal variance in the data and CCA extracts
maximally correlated lower dimension latent variables from the
input variables and the output variables (Anderson, 2003). Further,
control/monitoring statistics are derived from the lower dimen-
sional latent variables and monitored based on the control limits
derived from the null distributions of the statistics (Qin, 2003).

Classical latent variable techniques also have their probabilis-
tic counterparts. For instance, probabilistic PCA (PPCA) (Tipping
& Bishop, 1999b) and probabilistic CCA (PCCA) (Bach & Jordan,
2005) are the probabilistic counterparts of PCA and CCA, respec-
tively. Advantages of these probabilistic versions include: They
provide (1) complete distribution models for the dataset, (2) fea-
sible frameworks to accommodate different distribution assump-
tions to the dataset with specific data characteristics, for instance,
outliers (Chen, Martin, & Montague, 2009) and multi-modality
(Tipping & Bishop, 1999a), and (3) frameworks to handle missing
data (Ilin & Raiko, 2010). Some of the probabilistic counterparts
mentioned above have also been considered for process moni-
toring (Chen et al., 2009; Chen & Sun, 2009; Ge & Song, 2010;
Jiang, Huang, & Yan, 2016; Kim & Lee, 2003; Zhao, Li, Huang,
Liu, & Ge, 2015). However, the existing literature does not bring
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enough insights on their connectionwith the classical multivariate
techniques in the context of process monitoring.

As we intend to investigate the connection between the prob-
abilistic models and the classical techniques in the context of
monitoring, we find that there lies an incentive for defining a
GPLLVM that encompasses various probabilistic models. Instead
of looking at monitoring based on several models in isolation,
it helps us view the monitoring approaches in a single coherent
framework. It allows developing the monitoring approaches just
for the generalized model, which then can be simplified effort-
lessly to the special cases if desired. Hence, the following are
the objectives of this work: (1) Define a GPLLVM for monitoring
that subsumes several probabilistic counterparts of the classical
multivariate techniques, (2) develop monitoring statistics for the
general model, (3) bring out the insightful connection between
the probabilistic counterparts and the classical techniques in the
context of monitoring, and (4) present an approach based on the
EM algorithm for estimating the maximum likelihood parameters
of the GPLLVM. Also, as a part of this exercise, we flag some
common issues related to the monitoring statistics in the existing
literature for probabilistic latent variable model basedmonitoring.

The remainder of this paper is organized as follows: In Section 2,
we present the preliminaries required for the paper. In Section 3,
we introduce the proposed model for monitoring. In Section 4, we
present the development of monitoring statistics from the model.
In Section 5, we show the connection between the monitoring
methods based on probabilistic latent variable models and the
classical techniques. In Section 6, we show numerical simulations
for verifying the presented results and in Section 7, we present the
concluding remarks. Also, we provide an approach based on the
EM algorithm for estimating the proposed model in Appendix A
for completion.

Notations: Here we present the recurring and the commonly used
notations in the paper. R represents the space of real numbers, IP
represents identity matrix of size P × P , E(.) and Cov(.), represent
the expectation and covariance, respectively, diag(.) represents the
operator that converts a vector into a diagonal matrix, N (µ,Σ)
represents multivariate normal distribution with mean µ and co-
variance Σ and superscript T represents the transpose operation.
Other notations used in the paper are describedwhen they are first
introduced.

2. Preliminaries

In this section, we provide a brief review of the PCA and CCA
based monitoring approaches that is necessary to appreciate some
of the key results presented in this paper.

2.1. PCA based monitoring

Consider a systemwith themean-centred outputs Y ≜ {y1, . . . ,
yn ∈ RP , . . . , yN} ∈ RP×N with sample covariance matrix Σ̃yy ⪰

0, corresponding to the normal operation of the system. Using
SVD/eigendecomposition, Σ̃yy is decomposed as the following,

Σ̃yy = ηKΛKη
T
K + η∼KΛ∼Kη

T
∼K (1)

where RK×K
∋ ΛK ≻ 0 is a diagonal matrix with K , (K <

P), principal eigenvalues of Σ̃yy as the diagonal elements and
R(P−K )×(P−K )

∋ Λ∼K ⪰ 0 is a diagonal matrix with (P − K )
minor eigenvalues of Σ̃yy as the diagonal elements. The matrices
ηK ∈ RP×K and η∼K ∈ RP×K are composed of orthonormal
eigenvectors as columns corresponding to the eigenvalues in ΛK
andΛ∼K , respectively. Then, the minor eigenvectors are discarded

and using ηK , the data is projected onto the lower dimension latent
space as the following,

SK = ηTKY (2)

where SK = {s1, . . . , sn ∈ RK , . . . , sN} ∈ RK×N are the lower di-
mension latent variables. The latent variables are linearly uncorre-
lated and their covariance is given byΛK = diag (λ1, λ2, . . . , λK ).

The PCA model developed from the normal data would be
deployed to monitor the routine operation data. Commonly, two
different statistics namely, (1) Hotelling’s T 2 (Hotelling, 1947),
and (2) Q (Jackson & Mudholkar, 1979) are monitored to check
the conformity of the new data to the normal operation. T 2 is the
normalized sum of squares of latent variables. For an observation
yn, the T 2 statistic is defined as the following,

T 2
n = ∥Λ

1
2
K sn∥2 = sTnΛ

−1
K sn = yTnηKΛ

−1
K ηTKyn (3)

The Q statistic is the sum of squares of the residuals obtained
with optimal least squares reconstruction.When the data is recon-
structed from the lower dimensional latent variables, the optimal
reconstruction for an observation in the least squares sense is given
by,

ŷn = ηK snK = ηKη
T
Kyn (4)

where ŷn is the reconstruction of yn given by PCA, the reconstruc-
tion residual rn is given by,

rn = (IP − ηKη
T
K )yn (5)

and the Q statistic is defined as the following,

Qn = ∥rn∥2 = rTn rn = yTn
(
IP − ηKη

T
K

)
yn (6)

Remark 1. It can also be shown that PCA is an optimal solution of
minηKΣ

N
n=1∥rn∥2 s.t ηTKηK = IK .

The null distribution of the T 2 statistic is a χ2 distribution with
K degrees of freedom. The Q statistic is reducible to a nonnegative
sum of χ2 random variables, and for its cumulative distribution
function, several approximations are available in the literature (for
a recent review, see Bodenham & Adams, 2016). Commonly, the
approximation provided in Jensen and Solomon (1972) is used for
obtaining the control limits in the context of process monitoring
following Jackson & Mudholkar (1979).

2.2. CCA based monitoring

Consider a system with the mean-centred outputs Y , inputs
X ≜ {x1, . . . , xn ∈ RL, . . . , xN} ∈ RL×N , their respective sample
covariance matrices Σ̃yy ≻ 0, Σ̃xx ≻ 0 and the cross covariance
matrix Σ̃yx, corresponding to the normal operation data. CCA ex-
tracts linearly independent latent variables from X and Y using
the linear projection matrices ζx ∈ RL×J and ζy ∈ RP×J , J =

min(L, P), respectively, such that the extracted latent variables
havemaximumcorrelation.When Σ̃xx and Σ̃yy are invertible, it can
be obtained as the following,

ζy = Σ̃
−

1
2

yy βy, ζx = Σ̃
−

1
2

xx βx (7)

from the following decomposition,

Σ̃
−

1
2

yy Σ̃yxΣ̃
−

1
2

xx = βyΓ β
T
x (8)

where RJ×J
∋ Γ ⪰ 0 is a diagonal matrix with the singular values,

and the matrices βy ∈ RP×J and βx ∈ RL×J contain orthonormal
eigenvectors spanning the basis of the row and the column spaces
of thematrix on the left hand side of Eq. (8), respectively. Due to the
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