
Automatica 96 (2018) 84–97

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Representation and network synthesis for a class of mixed
quantum–classical linear stochastic systems✩

Shi Wang a,*, Hendra I. Nurdin b, Guofeng Zhang c, Matthew R. James d

a College of Electrical and Information Engineering, Hunan University, Changsha, 410082, China
b School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, N.S.W. 2052, Australia
c Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, HKSAR, China
d Centre for Quantum Computation and Communication Technology, Research School of Engineering, Australian National University, Canberra,
ACT 0200, Australia

a r t i c l e i n f o

Article history:
Received 13 July 2016
Received in revised form 20 January 2018
Accepted 13 May 2018

Keywords:
Linear stochastic systems
Mixed quantum–classical linear stochastic
systems

Quantum systems
Classical probability
Quantum probability
Network synthesis theory
Physical realizability condition

a b s t r a c t

The purpose of this paper is to present a network realization theory for a class ofmixed quantum–classical
linear stochastic systems. Two forms, the standard form and the general form, of this class of linear
mixed quantum–classical systems are proposed. Necessary and sufficient conditions for their physical
realizability are derived. Based on these physical realizability conditions, a network synthesis theory for
this class of linear mixed quantum–classical systems is developed, which clearly exhibits the quantum
component, the classical component, and their interface. An example is used to illustrate the theory
presented in this paper.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Linear systems are of basic importance to classical control en-
gineering, and also arise in the modeling and control of quantum
systems; see, e.g., Dong and Petersen (2010), Gardiner and Zoller
(2004), Gough and James (2009), Gough and Zhang (2015), Jacobs
(2014), Mirrahimi and van Handel (2007), Nurdin and Yamamoto
(2017), Sayed Hassen, Heurs, Huntington, Petersen, and James
(2009), Wang and Dong (2017), Wang, Gao, and Dong (2017), Wil-
son et al. (2015), Wiseman and Milburn (2010), Zhang, Grivopou-
los, Petersen, and Gough (2018), Zhang and James (2011), Zhang
and James (2012) and Zhang, Liu, Wu, Jacobs, and Nori (2017). A
classical linear system described by the state space representation
can be realized using electrical components by linear electrical
network synthesis theory, see Anderson andVongpanitlerd (1973).

✩ The material in this paper was partially presented at the 51st IEEE Conference
on Decision and Control (CDC), December 10–13, 2012, Maui, Hawaii, USA. This
paper was recommended for publication in revised form by Associate Editor James
Lam under the direction of Editor Ian R. Petersen.
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Linear quantum optical systems may be described by linear quan-
tum differential equations in the Heisenberg picture of quantum
mechanics, Gardiner and Zoller (2004), Gough and James (2009),
Gough and Zhang (2015), James, Nurdin, and Petersen (2008),
Nurdin, James, and Petersen (2009), Nurdin and Yamamoto (2017),
Wang, Nurdin, Zhang, and James (2013),Wilson et al. (2015),Wise-
man and Milburn (2010) and Zhang et al. (2018). Such quantum
linear systems described by the state space representation can be
built by optical cavities, degenerate parametric amplifiers (DPA),
phase shifters, beam splitters, and squeezers, etc.; interested read-
ers may refer to Bachor and Ralph (2004), Leonhardt (2003),
Nurdin, James, and Doherty (2009) and Nurdin and Yamamoto
(2017) for a more detailed introduction to these optical devices.
Quantum technologies often comprise quantum systems intercon-
nected with classical (non-quantum) devices, which means that
the two types of systems may be connected as an integral whole
(called mixed quantum–classical systems in this paper) by ap-
propriate interfaces that convert quantum signals to classical sig-
nals, and vice-versa. Traditionally, such quantum optical networks
would be implemented on an optical table. However, it is now
becoming possible to consider implementation in semiconductor
chips, (Beausoleil, Keukes, Snider,Wang, &Williams, 2007; O’Brien,
Furusawa, and Vuckovic, 2009; Wang et al., 2013).
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Fig. 1. A mixed quantum–classical system (Cavity locking feedback control loop)
studied in Sayed Hassen et al. (2009).

In classical control engineering, many methods have been
developed for designing controllers thatmeet various control spec-
ifications. The design process begins with some form of specifica-
tion for the system, and concludes with a physical realization of
the controller that meets the specifications. Often, mathematical
models for the controller are used in the design process, such as
state space equations for the controller. These state space equa-
tions may result from a mathematical optimization procedure,
such as H∞, LQG, or some other procedure. The process of going
from such mathematical models to the desired physical systems
is a process of synthesis or physical realization, part of the design
methodologies widely used in classical engineering Anderson and
Vongpanitlerd (1973). Analogous design issues are beginning to
present themselves in quantum technology. A quantum control
system often has both quantum and classical components. Indeed,
in measurement-based feedback control, a classical controller is
used to control a quantumplant. That is, a quantum control system
is often a mixed quantum–classical system. Fig. 1 illustrates an
example of a mixed quantum–classical linear system studied in
Sayed Hassen et al. (2009). In this measurement-based feedback
control system, a Fabry–Perot optical cavity Bachor and Ralph
(2004), Nurdin et al. (2009) and Walls and Milburn (2008), which
is described quantum-mechanically, is connected to a classical
controller via a homodyne detector (HD) and a piezo-electric actu-
ator Wiseman and Milburn (1993, 2010). The light field (quantum
signal) reflected from the cavity is first separated from the incom-
ing laser beam by an optical isolator, and then is detected by a HD
(a quantum-to-classical converter), thus yielding a photocurrent
which is a classical signal. The classical controller processes such
classical signals to generate a classical control input u, which is
then fed back to regulate the optical path length of the cavity via
the piezo-electric actuator in order to actuate the resonant fre-
quency of the cavity. Interested reader may refer to Sayed Hassen
et al. (2009) for more details.

The purpose of this paper is to propose canonical represen-
tations for a class of linear stochastic differential equations that
may describe mixed quantum–classical systems and then develop
a network synthesis theory for such class of equations that reveals
in a clear way the internal structure of a mixed quantum–classical
system. Furthermore, arbitrary linear stochastic differential equa-
tions for mixed systems need not correspond to a physical system,
and so we derive conditions ensuring that they do; that is, physical
realizability. This work generalizes and extends earlier work James
et al. (2008), Nurdin (2011), Wang, Nurdin, Zhang, and James

(2012). InWang et al. (2012),we only consider a standardmodel for
mixed quantum–classical linear stochastic systems for the design
process. However, in this paper, wewill investigate amore general
model for the physical realization of mixed quantum–classical
linear stochastic systems.

The rest of the paper is organized as follows. Section 2 intro-
duces some concepts about classical and quantum random vari-
ables as well as probabilities, briefly describes closed quantum
harmonic oscillators, and also gives a brief overview of linear
non-commutative stochastic systems and non-demolition condi-
tions. Section 3 proposes two models of mixed quantum–classical
linear stochastic systems for the design process and presents a
connection between these models. Section 4 presents physical
realizability definitions and constraints for the twomodels defined
in Section 3, respectively. Section 5 develops a network synthesis
theory for a mixed quantum–classical system. Section 6 presents
a potential application of the main results of Section 5. Finally,
Section 7 gives the conclusion of this paper.

2. Preliminaries

2.1. Notation

The notations used in this paper are as follows. The imaginary
unit is i =

√
−1. The commutator of two operators A and B is

defined by [A, B] = AB − BA. If x and y are column vectors of
operators, the commutator is defined by [x, yT ] = xyT − (yxT )T .
If X = [xjk] is a matrix of linear operators or complex numbers,
then X#

= [x∗

jk] denotes the operation of taking the adjoint of each
element of X , and X†

= [x∗

jk]
T . We also define ℜ(X) = (X + X#)/2

and ℑ(X) = (X − X#)/2i. The symbol Ik denotes the k × k identity
matrix, 0j×k denotes the j × k zero matrix and 0k ≡ 0k×k. Let
J = [0 1; −1 0] and diagk(M) denote a block diagonal matrix with
the square matrix M appearing k times on the diagonal block. A
symplecticmatrix V of dimension 2k×2k is a realmatrix satisfying
VΘkV T

= Θk, whereΘk = diagk(J). We set h̄ = 1 throughout this
paper.

2.2. Classical and quantum random variables

A classical random variable, usually written as X , is a variable
whose possible values are numerical outcomes of a random phe-
nomenon. A random variable X with mean µ = E[X] and variance
σ 2

= E[(X−µ)2] is said to beGaussian if its probability distribution
function F is Gaussian, i.e.,

F (a < X ≤ b) =

∫ b

a
pX (x)dx, ∀ − ∞ < a < b < ∞, (1)

where pX (x) =
1

σ
√
2π

exp(− (x−µ)2

2σ2 ) is of course the well-known
Gaussian probability density function.

In quantum physics, a quantum random variable A is an op-
erator defined on a Hilbert space H. In particular, if A is self-
adjoint, it is called an observable and can be used to represent
some physical quantity. Because an observable is self-adjoint, by
the spectral theory, its spectra are real numbers. Actually, an ob-
servable can be physically measured to generate outcomes which
are real numbers. On the other hand, a quantum state ψ encodes
an experimenter’s knowledge or information about some aspect
of reality and is given mathematically as a vector of H, permitting
the calculation of expected values of quantum random variables.
If an observable A is measured on a quantum system prepared
in the state ψ , then its mean value is given by the inner product
⟨ψ, Aψ⟩ =

∫
∞

−∞
ψ(q)∗Aψ(q)dq. In quantum mechanics, the Dirac

‘‘ket’’ notation |ψ⟩ is always used to denote a pure quantum state
ψ . The adjoint of |ψ⟩ is the ‘‘bra’’ vector ⟨ψ |. Then, we can write
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