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feedback is addressed in this paper. The system nonlinearities are only required to be Hélder continuous
with output-dependent Hoélder coefficients. A new constructive output-feedback, finite-time controller
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1. Introduction

Stabilization of nonlinear systems is of paramount importance
in control theory. There are a good number of papers on this
topic, such as local, semi-global, and global stabilization. See, for
instance (Freidovich & Khalil, 2008; Isidori, 2000; Krstic, Kanel-
lakopoulos, & Kokotovic, 1995; Praly & Jiang, 2004; Rios, Mera,
Efimov, & Polyakov, 2017; Teel & Praly, 1995) and numerous ref-
erences therein. Recently, some works are dedicated to the contin-
uous finite-time stabilization of double integrators (Bernuau, Per-
ruquetti, Efimov, & Moulay, 2015; Bhat & Bernstein, 1998; Hong,
Huang, & Xu, 2001), chain of integrators (Lopez-Ramirez, Efimov,
Polyakov, & Perruquetti, 2016), chain of power-integrators (Hong,
2002), lower-triangular systems (Hong, Jiang, & Feng, 2010; Li,
Qian, & Ding, 2010; Li, Sun, Yang, & Yu, 2015), stochastic sys-
tems (Gao & Wu, 2016; Huang & Xiang, 2016a, b; Li, Zhao, &
Liu, 2016), and the optimal finite-time stabilization (Haddad &
L’Afflitto, 2016). The finite-time stabilization means that, under
a suitably designed feedback controller, the state of a control
system will identically equal zero after finite time, as opposed
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to asymptotic stabilization requiring to drive the state to zero
asymptotically as time goes to infinity.

Although significant progresses have been made on the finite-
time stabilization, except for Refs. Bernuau et al. (2015), Hong et
al. (2001) and Lopez-Ramirez et al. (2016) that studied only for
the chains of integrators and Ref. Li et al. (2010) for the nonlinear
systems with restrictive growth conditions, a common feature of
the existing works (Gao & Wu, 2016; Hong, 2002; Hong et al., 2010;
Li et al,, 2015, 2016) is that the finite-time stabilization results
for general strongly nonlinear systems are obtained by using full-
state information. Often, in practical applications, only partial-
state information is available for the feedback controller design.
This thus challenges us to develop new tools for the design of
output-feedback controllers to solve the finite-time stabilization of
general strongly nonlinear systems. In this paper, we take up this
challenge by constructing an observer-based, output-feedback,
finite-time controller. The considered class of nonlinear systems
is transformable into the following lower-triangular form:

x1(t) = x2(8) + $1(¥(1)),
X(t) = x3(t) + d2(¥(1), xa2(1)),
L (1.1)
Xn—1(t) = Xp(t) + 1 (Y(£), . . ., Xa—1(1)),
Xn(£) = Pn(¥(t), ..., xa(£)) + u(t),

where x = (X1, ...,X;)| € R"is the state, ¢; € C(R', R),y = x; is
the output (measurement), u is the control (input). The observation
and stabilization problems for the lower-triangular systems have
been extensively investigated recently, see for example Andrieu,
Praly, and Astolfi (2009), Hong et al. (2010), Krstic et al. (1995),
Perruquetti, Floquet, and Moulay (2008), Praly and Jiang (2004) and
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Shen and Xia (2008), to list just a few. To the best of our knowledge,
there is no paper addressing the finite-time stabilization problem
for lower-triangular, high-order, strongly nonlinear systems by
output feedback.

In this paper, to achieve the finite-time stabilization by
means of output feedback, a finite-time observer is adopted for
the output-feedback controller design. Finite-time observers for
lower-triangular open-loop systems can be found in Du, He, and
Cheng (2014), Duo, Qian, Yang, and Li (2013), Perruquetti et al.
(2008), Rios et al. (2017), Sepulveda Galvez, Badillo-Corona, and
Chairez (2015) and Shen and Xia (2008). However, the output
feedback finite-time stabilization problem of the lower-triangular
strongly nonlinear systems remains open. In this paper, we will
give a solution to the output-feedback finite-time stabilization for
the nonlinear lower-triangular system (1.1) under mild conditions.

In this paper, as in Ref. Andrieu et al. (2009), the nonlinear
functions ¢;(-)’s in (1.1) are assumed to satisfy the following Hélder
condition with output-dependent Holder coefficients:

Assumption 1. There exists a function £ € C(R, [0, oo)) such that

1$i(y, X2, .., %) — iy, Ras ..., X))

Aoy A 1.2
< L) (1% — Rl 4 -+ + [xi — &) (12)
and
iy, 0,...,0) < LY)y*", i=1,2,...,m, (1.3)
whereo; € (0, 1,j=1,...,i,i=1,...,n

In Ref. Praly and Jiang (2004), the output-feedback asymptotic
stability is obtained by assuming the nonlinear functions ¢;(-)’s in
system (1.1) are Lipschitz continuous with the output-dependent
Lipschitz coefficients. In existing finite-time observer designs for
open-loop systems (Perruquetti et al., 2008; Shen & Xia, 2008), the
nonlinear functions ¢;(-)’s are assumed to be Lipschitz continuous
with constant Lipschitz coefficients. Notice that Assumption 1
holds with all o;i’s equal 1, when ¢;’s are Lipschitz continuous and
#i(0) = 0.

As compared with Ref. Andrieu et al. (2009) where the (asymp-
totic) observer design problem for a class of open-loop systems
is addressed, in this paper, we will study for the first time the
output-feedback finite-time stabilization problem for a class of
strongly nonlinear systems. The major difficulties encountered in
this paper are the high-order stabilizer design for the strongly
nonlinear lower-triangular systems, and the finite-time stability
analysis of the observer-based closed-loop control systems. It does
not appear easy to generalize the recursive state-feedback design
method in Hong et al. (2010) to the out-feedback finite-time stabi-
lization setting. A novel design based on the saturation strategy is
developed to overcome these difficulties.

The remaining contents are organized as follows: In Section 2,
we will first give a finite-time observer for system (1.1). A finite-
time controller is then designed for system (1.1) by using sat-
uration functions. The main result on finite-time stabilization is
presented in this section. Section 3 presents the proof of our main
result. A practical application to a robot is presented in Section 4 for
the illustration. Some concluding remarks are given in Section 5.

2. Finite-time observer and output-feedback controller

In this section, we first design a finite-time observer for system
(1.1). Then we present an observer-based, output-feedback, finite-
time stabilizer design scheme for the system (1.1) by adopting the
saturation method.

Inspired by Hong et al. (2001), Perruquetti et al. (2008) and
Shen and Xia (2008), a finite-time observer for system (1.1) can be

designed as:

SLILCOERIG )"

ftir) =R(tir =
+1(¥(t)), ,
" ka[r"(y(t) — &a(t; 1))]

=2 (2.1)
+a(y(t), Xa(t; 1)),

§2(f§ r)=Zxs(t;r

A ’ 2 On
Xn(t: 1) = ka[r"(y(£) — Ry (t: 7))]

+on(y(), Xa(E;T), ..., Xn(E5 7)) + ult),
where r > 0, the function [-]% is defined as [t]% = |t|%sign(7),
6;=i0—(i—1),i=1,2,...,n,0 € (1—1/n, 1), and the constants
ks are chosen such that the following matrix is Hurwitz:

-k 1 0 --- 0

Knxn = : . : : (22)
—kp—1 0O O -+ 1
~k, 0 0 - 0

The parameters k;’s can be determined by pole placement tech-
nique. The similar finite-time observer can be found in Du et al.
(2014) and Duo et al. (2013).

The terminal-sliding mode observer (Tan, Yu, & Ma, 2010) is
also afinite-time observer. Compared with the finite-time observer
proposed in this paper, the terminal-sliding mode observer is only
valid for a special case of system (1.1) when ¢; = 0 for eachi =
1,...,n — 1. Furthermore, the design functions in the finite-time
observer of this paper is continuous, as opposed to discontinuous
terminal-sliding mode observer.

To address the general observer-based, output-feedback, finite-
time stabilization problem for the system (1.1) under general
Assumption 1, we construct the following finite-time stabilizing
controller (2.3) by adopting saturation functions:

n
: Bi

u(t)=p Z af[satm,- (p”"fci(t; r))] , (2.3)

i=1
where p > 0is a positive constant,

ng—(n—1
p=P—=D) g (2.4)
(i—-1p—(i—2)

B € (1—1/n,1),and g;’s are chosen such that the matrix below is
Hurwitz:

o 1 0 --- 0
Anxn = : : : K : (25)
o 0o o0 --- 1
a a das --- 0 nxn
The saturation function saty, : R — R is defined by
—M;, 7 €(—o0, =M,
saty,(t) =1 7, T € (—M;, My), (2.6)

M; T € [M;, 00),

where M;(1 < i < n)are positive constants to be specified in (3.45),
that depend on the upper bounds of initial values of system (1.1).

Theorem 2.1. Assume the matrices defined in (2.2) and (2.5) are
Hurwitz, the nonlinear functions ¢;(-)’s in the system (1.1) satisfy
Assumption 1. Then there exist &* € (0, 1), 8* € (0, 1), 8* € (0, 1),
r* > 0, and p* > O such that for any o5 € [a*, 1], B € (B*, 1),
0 € (6%, 1), r >r* and p > p*, the solutions of the system (1.1) and
observer (2.1) satisfy

x(t;r)=x(t), x(t)=0, Vt>T,i=1,2,...,n, (2.7)
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