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a b s t r a c t

A fundamental performance limit is derived for a class of positive nonlinear systems. The performance
limit describes the achievable output response in the presence of a positive disturbance and subject to a
sign constraint on the allowable input. An explicit optimal input is derivedwhichminimises themaximum
output response whilst ensuring that the minimum output response does not fall below a pre-specified
lower bound. The result provides a fundamental performance standard against which all control policies,
including closed loop schemes, can be compared. Implications of the result are examined in the context
of blood glucose regulation for Type 1 Diabetes.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Positive dynamical systems are frequently used to describe
physical systems including those found in economics, chemical
processes and biology (Farina & Rinaldi, 2011; Kaczorek, 2002).
There exists a substantial literature on the modelling and proper-
ties of such systems (Berman, Neumann, & Stern, 1989; Farina &
Rinaldi, 2011; Kaczorek, 2002; Krasnosel’skij, Lifshits, & Sobolev,
1989).

The current paper develops a fundamental performance limit
for a class of positive nonlinear systems. The result is in the spirit of
other existing results on performance limits which, inter-alia, give
bounds on achievable performance subject to constraints on the
model, control architecture and/or allowable signals (Chen, 1995;
Freudenberg & Looze, 1985; Goodwin, Graebe, & Salgado, 2001;
Horowitz, 1963; Middleton, 1991; Seron, Braslavsky, & Goodwin,
1997).

The result applies to a class of positive nonlinear systems in
which the input is constrained to be positive whilst the output
is required to satisfy a specified lower bound. Subject to these
constraints, the goal is to minimise the maximum excursion of the
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output variable in response to a particular disturbance. A closed
form solution to this optimisation problem is developed. The re-
sult provides a performance limit against which all other control
policies can be compared.

An important case where the result is of relevance is in blood
glucose regulation for type 1 diabetes management (Atkinson,
Eisenbarth, & Michels, 2014; Chee & Fernando, 2007). A com-
mon model used in this area is a special case of the model class
considered here. For this particular problem, the input signal is
externally delivered insulin flow, which is necessarily positive; the
disturbance corresponds to ingested food; the safety lower bound
on the output arises from the need to avoid hypoglycaemia and the
performance goal is to reduce long term hyperglycaemia (Aronoff,
Berkowitz, Shreiner, & Want, 2004). The results presented here
show that an impulse (bolus) of insulin is better than any other
insulin injection policy applied at the same time or after. This also
implies that it is better to apply an insulin bolus as soon as practical
either prior to themeal orwith themeal. This conclusion reinforces
the common advice given by clinicians. Note that, in practice, a
related dual wave administration of insulin is sometimes preferred
due to robustness reasons — see Remark 29 later in the paper.

The current paper extends and embellishes several recent re-
sults aimed more directly at the diabetes problem (Goodwin,
Medioli, Carrasco, King, & Fu, 2015; Phan et al., 2016; Townsend
& Seron, 2018; Townsend, Seron, & Goodwin, 2017). The result
presented here goes beyond the earlier results in several aspects.
Firstly, the earlier results were obtained for a particular blood
glucose model, whereas the results herein hold for a more general
class of nonlinear systems. Secondly, earlier work depended on
an assumption regarding the impulse response of a third order
stable all-real-pole linear subsystem, i.e., the system connecting
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insulin flow to insulin effectiveness (in plasma). In this paper, the
latter assumption is proven to hold for arbitrary stable all-real-
pole linear systems. Thirdly, in previous work, the times when the
maximum and minimum response occur were implicitly defined.
In the current paper, the times are made explicit in terms of a
prototype input signal. Fourthly, in Townsend and Seron (2018)
and Townsend et al. (2017) the analysis was restricted to square
wave (pulse) inputs. Here, arbitrary positive inputs are considered.
In view of the above, both the result and the proofs in the current
paper are significantly more general than in earlier work.

Delays are common in biological processes, meaning there is
typically an unavoidable period between the time inputs are ap-
plied and when they become effective. Because of their impor-
tance, there exists a substantial literature on the impact of delays
on performance and stability of control systems — see for example
Gao and Olgac (2016, 2017), Gao, Kammer, Zalluhoglu, and Olgac
(2015a, b) and Gao, Zalluhoglu, and Olgac (2014). The aforemen-
tioned results represent an important restriction on the achievable
closed loop bandwidth for controllers such as those presented in
Atlas, Nimri, Miller, Grunberg, and Phillip (2010), Bequette (2005,
2012), Cefalu and Tamborlane (2014), Chee and Fernando (2007),
Doyle III, Huyett, Lee, Zisser, and Dassau (2014), El-Khatib, Russell,
Nathan, Sutherlin, and Damiano (2010), Gondhalekar, Dassau, and
Doyle III (2016), Harvey et al. (2010), Klonoff, Cobelli, Kovatchev,
and Zisser (2009), Kovatchev et al. (2010), Kovatchev, Tamborlane,
Cefalu, and Cobelli (2016), Kumareswaran (2012), Lee, Bucking-
ham, Wilson, and Bequette (2009), Weinzimer et al. (2008) and
elsewhere for the Type 1 diabetes problem. The key result of
the current paper has a feedforward character, and thus closed
loop stability issues do not arise. Nonetheless, we have explicitly
accounted for time delays in the problem formulation and solu-
tion. Two potential sources of delay are considered, namely an
unavoidable plant (or biological) delay and a control law delay,
specifying the time when the control action departs from a chosen
steady-state value. In the diabetes treatment context, for example,
the control law delay can be interpreted as the time that elapses
between the occurrence of a (food) disturbance and when it is
actually reported to the controller — see Phan et al. (2016) for
further discussion of the latter type of delay. In this context, it
is important to note that the control law delay can actually be
negative, i.e., when the occurrence of a disturbance is correctly
anticipated. The results presented in the paper explicitly include
the impact of both plant and control law delays on achievable
performance.

The layout of the remainder of the paper is as follows: Section 2
describes the class of nonlinear positive systems used throughout
the paper. Section 3 presents several preliminary properties of
the model. Section 4 specifies signal constraints. Section 5 defines
the underlying optimisation problem and the performance goal.
Section 6 establishes the key result of the paper, namely that there
exists a closed form solution to the aforementioned optimisation
problem. Section 7 explains the relevance of the results to blood
glucose regulation for Type 1 Diabetes. Section 8 presents a nu-
merical example. Conclusions are presented in Section 9.

2. The model class

This section describes the model class. The key elements of the
model are: (i) a nonlinear subsystem which includes a positive
non-decreasing function, and (ii) a linear subsystem which is a
stable all-real-pole system. In addition, all signals are positive and
the manipulated input acts contrary to an external disturbance.

Remark 1. This problem formulation is consistent with the dia-
betes treatment problem inwhich insulin flow can only be positive
and where food ingestion causes a positive transient in blood
glucose. □

Fig. 1. System diagram.

The model is shown schematically in Fig. 1. Here u(t), i(t), r(t)
and y(t) denote respectively the input, the input to the nonlinear
subsystem, a disturbance and the output.

The signals u(t), i(t) are the input and the output of a linear
subsystem. For convenience, these variables will also be converted
to their corresponding incremental forms as follows:

u(t) = uss + ũ(t) (1)

i(t) = iss + ĩ(t) (2)

where uss, iss denote steady state values, and ũ(t), ĩ(t) denote
increments from the steady state. Correspondingly, we denote

y(t) = yss + ỹ(t). (3)

2.1. Linear subsystem

The linear block denoted ‘‘Linear Subsystem’’ in Fig. 1 is as-
sumed to be a stable all-real-pole linear system plus a plant delay
denoted θp. We write

i(t) =

∫ t

−∞

h(t − τ )u(τ − θp)dτ , (4)

where h(t) is the associated impulse response of the stable all-real-
pole system and θp ≥ 0.

Stable all-real-pole linear systems often arise in models for
systems described as a series of compartments (Anderson, 1983;
Godfrey, 1983).

2.2. Nonlinear subsystem

The nonlinear subsystem in Fig. 1, is modelled as follows:

ẏ(t) = −(ε + m[i(t)])y(t) + r(t) + c, (5)

where y(t), r(t), ε, c denote respectively the output variable,
a non-negative disturbance, and two positive constants. A key
assumption used in the sequel is the following.

Assumption 2. The function m[i(t)] is a positive non-decreasing
function. □

Remark 3. A special case of a function in this class is theMichaelis–
Menten function (Menten & Michaelis, 1913), defined by

m[i(t)] = m∗
[i(t)] =

i(t)
1 + β · i(t)

, β ≥ 0. (6)

Such functions often appear in the modelling of biological and
biochemical systems (Johnson & Goody, 2011). □

Remark 4. In the case β = 0, Eq. (5) becomes a bilinear model in
which a product occurs between i(t) and y(t). □

Remark 5. The case β = 0 corresponds exactly to a model
often used in numerical studies of the diabetes problem — see for
example Bergman (2005) and Kanderian, Weinzimer, Voskanyan,
and Steil (2009). □
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