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a b s t r a c t

This paper concerns maximum likelihood identification of linear time invariant state space models,
subject to model stability constraints. We combine Expectation Maximization (EM) and Lagrangian
relaxation to build tight bounds on the likelihood that can be optimized over a convex parametrization of
all stable linear models using semidefinite programming. In particular, we propose two new algorithms:
EM with latent States & Lagrangian relaxation (EMSL), and EM with latent Disturbances & Lagrangian
relaxation (EMDL). We show that EMSL provides tighter bounds on the likelihood when the effect of
disturbances is more significant than the effect of measurement noise, and EMDL provides tighter bounds
when the situation is reversed. We also show that EMDL gives the most broadly applicable formulation
of EM for identification of models with singular disturbance covariance. The two new algorithms are
validated with extensive numerical simulations.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Linear time invariant (LTI) state space models provide a useful
approximation of dynamical system behavior in a multitude of
applications. In situations where models cannot be derived from
first principles, some form of data-driven modeling, i.e. system
identification, is appropriate (Ljung, 1999). This paper is concerned
with identification of discrete-time linear Gaussian state space
(LGSS) models,

xt+1 = Axt + But + wt , (1a)
yt = Cxt + Dut + vt , (1b)

where xt ∈ Rnx denotes the system state, and ut ∈ Rnu , yt ∈ Rny

denote the observed input and output, respectively (henceforth,
resp.). The disturbances, wt ∈ Rnw and measurement noise, vt ,
are modeled as zero mean Gaussian white noise processes, while
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the uncertainty in the initial condition x1 is modeled by a Gaussian
distribution, i.e.

wt ∼ N (0, Σw), vt ∼ N (0, Σv), x1 ∼ N (µ, Σ1). (2)

For convenience, all unknown model parameters are denoted by
the variable θ = {µ, Σ1, Σw, Σv, A, B, C,D}.

In this work, we seek the maximum likelihood (ML) estimate of
themodel parameters θ , givenmeasurements u1:T and y1:T , subject
to model stability constraints, i.e.

θ̂ML
= argmax

θ
pθ (u1:T , y1:T ) s.t. A ∈ S. (3)

ML methods have been studied extensively and enjoy desirable
properties, such as asymptotic efficiency; see, e.g., Ljung (1999,
Chapters 7 and 9).

Identification of LTI systems is complicated by (at least) two
factors: latent variables and model stability, the latter being an
essential property in many applications. Typically, observed data
consists of inputs and (noisy) outputs only; the internal states
and/or exogenous disturbances are latent or ‘hidden’. Bilinearity
of (1) in x and θ means that the joint set of feasible states and
parameters is nonconvex. Additionally, even if x is known, the set
of Schur stable matrices, which we denote S , is also nonconvex.

Various strategies have been developed to deal with the
problem of latent variables. Marginalization, for instance, involves
integrating out (i.e. marginalizing over) the latent variables, leav-
ing θ as the only quantity to be estimated. This approach is
adopted by prediction error methods (Ljung, 1999, 2002) (PEM)
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and theMetropolis–Hastings algorithm (Hastings, 1970; Metropo-
lis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953).

Alternatively, one may treat the latent variables as additional
quantities to be estimated together with the model parameters.
Such a strategy is termed data augmentation, and examples include
subspace methods (Larimore, 1983; Van Overschee & De Moor,
1994), and the Expectation Maximization (EM) algorithm (Demp-
ster, Laird, & Rubin, 1977; Gibson & Ninness, 2005; Schön, Wills,
& Ninness, 2011; Shumway & Stoffer, 1982). The augmentation
together with appropriate priors also allows for closed form ex-
pressions in a Gibbs sampler (Geman &Geman, 1984;Wills, Schön,
Lindsten, & Ninness, 2012), (as a special case of the Metropolis–
Hastings algorithm).

Recently, a new family of methods have been developed in
which one supremizes over the latent variables, with an appro-
priate multiplier, to obtain convex upper bounds for quality-
of-fit cost functions, such as output error (Megretski, 2008;
Tobenkin, Manchester, & Megretski, 2017). An important tech-
nique employed in this approach is a type of Lagrangian relaxation,
similar to a method widely applied in combinatorial optimiza-
tion (Lemaréchal, 2001) and robust control, where it is referred to
as the S-procedure (Pólik & Terlaky, 2007; Yakubovich, 1971).

The problem of model stability has also seen considerable
attention over the years. In subspace identification, a number
of strategies have been proposed: Maciejowski (1995) showed
that stability can be guaranteed by augmenting the extended
observability matrix with rows of zeros; in Van Gestel, Suykens,
Van Dooren, and De Moor (2001), regularization was used to con-
strain the spectral radius of the identified A to a user-specified
value; Lacy and Bernstein (2002) constrained the largest singular
value of A to be less than unity, using a linear matrix inequality
(LMI), yielding sufficient albeit conservative conditions for stabil-
ity; the follow-up work of Lacy and Bernstein (2003) introduced
an LMI parametrization of all stable models, S; this approach
was generalized in Miller and De Callafon (2013) to constrain the
eigenvalues of A to arbitrary convex regions of the complex plane.
However, these subspace methods do not fall within, nor inherit
the desirable properties of, the ML framework; e.g. Maciejowski
(1995) is known to bias the estimated model, and even uncon-
strained subspace methods are generally considered to be less
accurate than PEM (Favoreel, De Moor, & Van Overschee, 2000).
Furthermore, Lacy and Bernstein (2003) replace the least-squares
objective with a weighted projection which, as noted in Siddiqi,
Boots, and Gordon (2007) can produce substantial distortions.

As a middle ground between the conservatism of Lacy and
Bernstein (2002) and the distortions of Lacy and Bernstein (2003),
the authors of Siddiqi et al. (2007) proposed a constraint generation
approach; cf. also Boots (0000). The method takes as its starting
point anunconstrained least squares problem, such as those arising
in subspace identification or EM with latent states, and then iter-
atively introduces linear constraints until a stable model is iden-
tified. This leaves the desired cost function undistorted; however,
the resulting polytopic approximation of S excludes many stable
systems from consideration.

In output-error (a.k.a. simulation-error) identification, which
can be interpreted as a special case of ML with no distur-
bances, convex optimization approaches have been developed
based on LMI parameterizations of all stable models and convex
bounds on output error, including the Lagrangian relaxation men-
tioned above (Tobenkin et al., 2017; Tobenkin, Manchester, Wang,
Megretski, & Tedrake, 2010; Umenberger & Manchester, 2016).
However, due to the approximation of output error these ‘‘one-
shot’’ convex optimization methods will generally be biased and
will not produce true ML estimates.

In contrast to the above approaches, in this paper wemaximize
the true likelihood over a complete convex parametrization of all

stable models. We do so by leveraging the underlying similari-
ties between EM and Lagrangian relaxation to incorporate model
stability constraints into the ML framework. The EM algorithm is
an iterative approach to ML estimation, in which estimates of the
latent variables are used to construct tractable lower bounds to
the likelihood. We use Lagrangian relaxation to derive alternative
bounds on the likelihood, that have advantage of being able to be
optimized over a convex parametrization of all stable linear mod-
els, using standard techniques such as semidefinite programming
(SDP).

In this paper, we treat both the latent states and latent dis-
turbances formulation of EM, leading to two algorithms: EM with
latent States & Lagrangian relaxation (EMSL), and EM with latent
Disturbances & Lagrangian relaxation (EMDL). The former repre-
sents the de facto choice of latent variables; however, we show
that the latter can lead to higher fidelity bounds on the likelihood,
when the effect ofmeasurement noise ismore significant than that
of the disturbances. We also show that latent disturbances lead to
themost broadly applicable formulation of EM for identification of
singular state space models.

We first introduced the basic idea of combining Lagrangian
relaxationwith a formulation of EM over latent disturbances in our
conference paper (Umenberger, Wågberg, Manchester, & Schön,
2015). This paper extends that work in several significant ways.
Foremost, we now incorporate model stability constraints into the
more common latent states formulation, cf. Section 4.1, as well as
the latent disturbances case, cf. Section 4.2.We also extend the pro-
posedmethod tohandle correlated disturbances andmeasurement
noise, cf. Section 4.3. In Section 4.2 we apply Lagrangian relaxation
without resorting to Monte Carlo approximations, unlike (Umen-
berger et al., 2015). Furthermore, the Lagrangian relaxation de-
tailed in this paper makes use of a more effective multiplier, which
improves fidelity of the bound. Finally, a new study of the behavior
of the EM algorithm for large and small disturbances is presented
in Section 5.2 and Section 5.3, offering insights to guide the practi-
tioner as to the best choice of latent variables for a given problem.

2. Preliminaries

2.1. Notation

The cone of real, symmetric nonnegative (positive) definite
matrices is denoted by Sn

+
(Sn
++

). The n × n identity matrix is
denoted In. Let vec : Rm×n

↦→ Rmn denote the function that stacks
the columns of amatrix to produce a column vector. The Kronecker
product is denoted ⊗. The transpose of a matrix A is denoted A′.
For a vector a, |a|2Q is shorthand for a′Qa. Time series data {xt}bt=a
is denoted xa:b where a, b ∈ N. A random variable x distributed
according to the multivariate normal distribution, with mean µ
and covariance Σ , is denoted x ∼ N (µ, Σ). We use a(θ ) ∝ b(θ )
to mean b(θ ) = c1a(θ ) + c2 where c1, c2 are constants that do
not affect the minimizing value of θ when optimizing a(θ ). The
log likelihood function is denoted Lθ (y1:T ) ≜ log pθ (u1:T , y1:T ). The
spectral radius (magnitude of largest eigenvalue) of a matrix A is
rsp(A).

2.2. The minorization–maximization principle

The minorization–maximization (MM) principle (Hunter &
Lange, 2004; Ortega & Rheinboldt, 1970) is an iterative approach to
optimization problems of the form maxθ f (θ ). Given an objective
function f (θ ) (not necessarily a likelihood), at each iteration of an
MM algorithmwe first build a tight lower bound b(θ, θk) satisfying

f (θ ) ≥ b(θ, θk) ∀ θ and f (θk) = b(θk, θk),

i.e. we minorize f by b. Then we optimize b(θ, θk) w.r.t. θ to obtain
θk+1 such that f (θk+1) ≥ f (θk). The principle is useful when direct
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