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a b s t r a c t

This paper addresses the classical problem of determining the set of possible states of a linear discrete-
time SISO system subject to bounded disturbances, from measurements corrupted by bounded noise.
These so-called uncertainty sets evolve with time as new measurements become available. We present
two theorems which give a complete description of the relationship between uncertainty sets at two
successive time instants, and this yields an efficient algorithm for recursively updating uncertainty sets.
Numerical simulations demonstrate performance improvements over existing exact methods.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a linear, time-invariant dynamic SISO system driven
by set-bounded process noise, and with measurements corrupted
by set-bounded observation noise. The set of possible states of the
system consistent with the measurements up to the current time
is termed the state uncertainty set (or simply uncertainty set). In
many applications having a representation of the uncertainty set is
useful. This so-called set membership estimation problem is fun-
damental andhasmany applications, for example in fault detection
(Alamo, Bravo, & Camacho, 2005; Casau, Rosa, Tabatabaeipour,
Silvestre, & Stoustrop, 2015; Rosa, Silvestre, Shamma, & Athans,
2010; Tabatabaeipour, 2015; Tornil-Sin, Ocampo-Martinez, Puig, &
Escobet, 2012), control under constraints in the presence of noise
(Bertsekas & Rhodes, 1971; Glover & Schweppe, 1971), and model
(in)validation (Poolla, Khargonekar, Tikku, Krause, & Nagpal, 1994;
Rosa, Silvestre, & Athans, 2014). A closely related topic is identi-
fication of bounded-parameter models (Belforte, Bona, & Cerone,
1990; Clement & Gentil, 1990; Norton, 1987).

The first results on recursive determination of the uncertainty
set are in Schweppe (1968) and Witsenhausen (1968). Since the
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appearance of these papers there has appeared an extensive liter-
ature on the topic. See Fogel and Huang (1982) and Ninness and
Goodwin (1995) for background on the set-bounded approach to
uncertainty, the survey paper (Milanese & Vicino, 1991) and the
book (Blanchini & Biani, 2008). Some of the many other papers
which consider this problem are Blanchini and Sznaier (2012),
Stoorvogel (1996) and Tempo (1988).

In the first part of the seminal paper (Witsenhausen, 1968)
an exact in principle solution to the problem of recursively de-
termining polytopic uncertainty sets is given. It uses the H-
representation for the uncertainty sets, that is they are defined
using inequality constraints. But the solution requires (Minkowski)
addition, and intersections, of polytopes, both of which can be
time-consuming. Exact, recursiveH-representationmethods often
use Fourier–Motzkin elimination or parametric linear program-
ming, see Keerthi and Gilbert (1987), Rakovic and Mayne (2004)
and Shamma and Tu (1999) for the former, and Jones, Kerrigan, and
Maciejowski (2008) for the latter. In these implementations it is the
identification and removal of redundant inequality constraints that
is most demanding computationally. The redundant constraints
can be removed by solving linear programs but this is not a trivial
task, for which only weak polynomiality is known if only the
H-representation of the polytope is available. For this reason there
has been a lot of research recently on the use of zonotopes and
constrained zonotopes to approximate the exact polytopic uncer-
tainty set, see for example Alamo, Bravo, Redondo, and Camacho
(2008), Combastel (2015) and Scott, Raimondo, Marseglia, and
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Braatz (2016). For hardness results on polytopic computations, see
Tiwary (2008).

Another interesting recent approach using exact methods,
based on geometric ideas, is in Hagemann (2014). Here also an in-
equality description is used, and projection followed by redundant
inequality constraint elimination is necessary.

In this paragraph and the next we describe the idea introduced
in this paper, and the key role played by duality in its implementa-
tion. A state in an uncertainty set at the current time has a history,
the trajectory of the plant’s state at previous times. For any current
state there must be at least one such trajectory, and it is uniquely
determined by the initial state and some sequence of noisy inputs
up to the current time. Our starting point is the question: Given a
state of the plant in the uncertainty set at the current time, and
the current measurement, what possible states are there in the
uncertainty set at the next time instant that lie on trajectories
containing the current state?Nowas stated the question is notwell
posed; knowing the state and measurement is not enough. Addi-
tionally, something about the current uncertainty set is required
in order to determine the forward evolution of the trajectory. We
show that the current measurement, the current state, and the
directions of just those facets of the current uncertainty set that
contain the current state, are preciselywhat is needed todetermine
all successor states which lie on trajectories containing the current
state. In fact, using just this information, much more can be said.
For any such successor to the current state, the directions of all the
facets of the uncertainty set at the next time instant that contain
the successor state can be found. This is our main result. It enables
the vertex/facet description of the current uncertainty set to be
efficiently and recursively updated to the vertex/facet description
of the uncertainty set at the next time instant.

The results described in the previous paragraph are derived
using properties of optimal solutions to a primal/dual pair of op-
timisation problems. Every state in the uncertainty set, including
those in the interior, can be interpreted as being in the argmax
of a mathematical programming problem related to the support
function for the uncertainty set. This is the primal problem. The key
to our results involves setting up a dual program,whose dual states
have an interpretation as direction vectors which are arguments
of the support function. Optimal solutions to the primal problem
yield the time evolution of a state along a trajectory. Such an evolv-
ing state may either be on the boundary or in the interior of the
current uncertainty set; if on the boundary thenwhether or not the
state is a vertex can also be determined. Optimal solutions to the
dual problemyield the time evolution of the directions of the facets
which contain the evolving primal states. It is a consequence of this
primal/dual framework that the proposed recursive method both
requires, and makes optimal use of, vertex and facet descriptions
of the uncertainty sets.

Some of the results in this paper build on ideas inWitsenhausen
(1968), particularly that of support function evolution. We use
linear programming rather than conjugate functions as our basic
tool, and employ the familiar complementary slackness conditions
relating primal and dual variables to prove our main results. How-
ever, our procedure for recursive updating of uncertainty sets does
not require the numerical solution of any linear programs.

2. Basic setup

The plant P , a linear, time-invariant, causal discrete-time, mth

order scalar system, is assumed known. There are two sources of
uncertainty, an input noise disturbance (uk)∞k=0 = u, and output
measurement noise (wk)∞k=0 = w. The plant output is (yk)∞k=0 = y,
and the measurement at time k is zk = yk + wk. The initial state,
at time k = 0, is assumed to be known exactly, but nothing is
known about the uncertainties except that they satisfy |uk| ≤ 1
and |wk| ≤ 1. We will refer to this as the primal system.

Given an initial state x0, the measurement history z1, . . . , zk−1,

and the plant dynamics, we seek the uncertainty set at time k,
denoted Sk; it is the set of possible states at time k consistent with
the measurements up to and including zk−1, and can be shown to
be a closed, convex polytope.

2.1. Notation

Given a vector y = (y0, y1, . . .) and any s ∈ N, t ∈ N satisfying
s < t, we denote (ys, ys+1, . . . , yt) by ys:t . Unless explicitly stated
otherwise, vectors inmatrix equations are column vectors, and the
superscriptT denotes transpose, so y is a column vector and yT is a
row vector. The λ-transform (generating function) of an arbitrary
sequence y = (yk)∞k=0 is defined to be ŷ(λ) :=

∑
∞

k=0ykλ
k. Real

Euclidean space of dimension m is denoted Rm, where m is the
order (McMillan degree) of the plant P . States of P are represented
by vectors, or points, in Rm. Let d = d0:m = (d0, . . . , dm) and
n = n0:m = (n0, . . . , nm), be real vectors, where n̂(λ) and
d̂(λ) are the numerator and denominator of the transfer function
representation of P . Denote by D∞ and N∞ the infinite, banded,
lower-triangular Toeplitz matrices whose first columns are d and
n, respectively. Define the following lower- and upper-triangular
submatrices of D∞.

DL :=

⎡⎢⎢⎢⎢⎣
d0 0 . . . 0

d1 d0
. . .

...
...

. . .
. . . 0

dm−1 . . . d1 d0

⎤⎥⎥⎥⎥⎦

DU :=

⎡⎢⎢⎢⎢⎣
dm dm−1 . . . d1

0 dm
. . .

...
...

. . .
. . . dm−1

0 . . . 0 dm

⎤⎥⎥⎥⎥⎦ .

The matrices NL and NU are defined similarly.
For any k ≥ 0, the k×k upper left hand corner submatrix ofD∞

is denoted Dk. We will often write simply D instead of Dk when k
is clear from context. The symbols Nk and N are defined similarly.
Note that Dm = DL and Nm = NL.

The Toeplitz Bezoutian matrix of n and d is defined as BT :=

DLNU − NLDU.
One formof theGohberg–Semencul formulas (Fuhrmann, 1996;

Gohberg & Semencul, 1972) states

BT = NUDL − DUNL, (1)

and this will be needed in the proof of Theorem 8, which underpins
all of our results. The first rowofBT plays an important role andwill
be denoted by C.

The inverse of BT exists if the polynomials n̂(λ) and d̂(λ) are
coprime, and B−1

T denotes the inverse of BT. See Heinig and Rost
(2010) for properties of Bezoutians.

2.2. Transfer function description and state-space representations

The plant for the primal system has the transfer function repre-
sentation P(λ) = n̂(λ)/d̂(λ) where

n̂(λ) = n0 + n1λ + n2λ
2
+ . . . + nmλm

d̂(λ) = d0 + d1λ + d2λ2
+ . . . + dmλm,

m ≥ 1 is an integer, n̂(λ) and d̂(λ) are assumed to be coprime
polynomials with real coefficients, and it is assumed that both the
plant P(λ) and the plant P∗(λ) for the dual system, defined below,
are causal, implying d0 ̸= 0 and dm ̸= 0, in which case the
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