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a b s t r a c t

This paper proposes a new distributed algorithm for Kalman filtering. It is assumed that a linear discrete-
time dynamic system ismonitored by a network of sensorswith some being active and some idle. The goal
of distributed state estimation is to devise a distributed algorithm such that each node can independently
compute the optimal state estimate by using its local measurements and information exchange with
its neighbours. The proposed algorithm applies to acyclic network graphs (i.e., tree graphs) with fast
finite-time convergence, but is also applicable to cyclic graphs by combining it with a distributed loop
removal algorithm. The proposed algorithm enjoys low complexities, robustness against transmission
adversaries and asynchronous implementability. The proposed distributed algorithm also applies to
maximum likelihood estimation and weighted least-squares estimation, as special cases. With simple
modifications, the proposed algorithm also applies to an important problem in signal processing called
distributed field estimation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Distributed Kalman filtering (DKF) has been an extremely active
research topic for over a decade, in response to rapid development
and vast deployment of low-cost sensors and sensor networks.
The technical challenge is how to migrate the well-established
central (or traditional) Kalman filtering (KF) approach (Anderson
& Moore, 1979; Kalman, 1960) to complex large-scale dynamic
systems with measurements distributed over a large geographical
area (Khan & Moura, 2008). Available DKF algorithms are already
abundant. For example, a one-step prediction algorithm was in-
troduced in Zhou (2013); a distributed iterate-collapse inversion
algorithm in conjunction with a bipartite fusion graph was in-
troduced in Khan and Moura (2008) for spatially sparse systems;
distributed fusion estimationwas proposed in Chen, Zhang, and Yu
(2014a, b) and Chen, Zhang, Yu, Hu, and Song (2015); DKF using
quantized information were studied in Li, Kar, Alsaadi, Dobaie,
and Cui (2015), Riberio, Giannakis, and Roumeliotis (2006) and
Song, Yu, and Zhang (2014); a DKF design using the well-known
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gossip protocol was given in Li, Kar, Moura, Poor, and Cui (2015);
DKF using diffusion strategies was studied in Cattivelli and Sayed
(2010) and Hu, Xie, and Zhang (2012); DKF with out-of-sequence
measurements was treated in Shen, Song, Zhu, and Luo (2009), and
fusion-centre based DKF designs were shown in Song, Xu, and Zhu
(2014) andXu, Song, Luo, andZhu (2012). SeeMahmoudandKhalid
(2013) for a recent survey on DKF. Related works also include dis-
tributed maximum likelihood estimation (Zhao & Nehorai, 2007)
and distributed weighted least-squares estimation (Marelli & Fu,
2015).

Numerous applications of DKF have been reported in the lit-
erature, ranging from environmental monitoring to surveillance,
detection, tracking and object classification. Target tracking using a
sensor network over a large geographical area is an active research
topic recently, andDKFhas been shown to play an important role in
this application (Medeiros, Park, & Kak, 2008; Zhou, Fang, & Hong,
2013). In fact, this line of research can be traced back to Durrant-
Whyte and Rao (1991) in 1991 and Regazzoni (1994) in 1994. DKF
also finds wide applications in plant-wide control systems (Vadi-
gepalli & Doyle, 2003), stochastic nonlinear systems with commu-
nication delays and packet losses (Wang, Fang, & Liu, 2015), clock
synchronization for sensor networks (Luo & Wu, 2013), wireless
sensor networks (Riberio & Giannakis, 2006), spatial estimation
(Cortés, 2009), power networks (Kanna, Dini, Xia, Hui, & Mandic,
2015; Roshany-Yamchi et al., 2013; Sun, Fu, Wang, & Zhang, 2015;
Tai, Lin, Fu, & Sun, 2013). We will also show in this paper a novel
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application of DKF in distributed field estimation where a sensor
network is used to estimate the parameters of a physical field
over a large geographical area, a problem with vast applications
on its own (see, e.g., Martinez, 2010; Talarico, Schmid, Alkhweldi,
& Valenti, 2014; Wang, Ishwar, & Saligrama, 2008).

One common approach to DKF is to use an average consensus
strategy as introduced in Xiao and Boyd (2004); see Carli, Chiuso,
Schenato, and Zampieri (2008), Das and Moura (2015), Kar and
Moura (2011), Song, Yu et al. (2014), Xu et al. (2012), and Zhou
et al. (2013) for examples of this approach. Themain shortcomings
of this approach include (1) usually only asymptotic convergence
is guaranteed, meaning that an infinite number of iterations is
required in theory; (2) stopping criteria are difficult to give for
practical applications; (3) only sub-optimal estimates are usually
given. Another common problem with many existing DKF algo-
rithms is that a fusion centre is required, which means that they
are not fully distributed. Approaches of this kind include Chen et al.
(2014a, b, 2015), Shen et al. (2009), Song, Xu et al. (2014) and Xu et
al. (2012).We also note that fusion centre is also commonly used in
the so-called parallel Kalman filtering where local measurements
are used to produce local estimates that are then fused together in
a fusion centre; see, e.g., Hashemipour, Sumit, and Laub (1988). The
need for fully distributed DKF with good optimality properties and
low computational, communicational and storage complexities is
urgent. These features are essential to make DKF scalable to large-
scale sensor networks.

In this paper, we consider a sensor network used to detect,
monitor and track targets within the geographical area covered by
the network. Each target is modelled as a linear dynamic system,
suitable for describing the motion of a moving target or changes
in time-varying parameters. The goal of this paper is to devise a
distributed algorithm that allows us to estimate the state of each
target system. The algorithm needs to have low complexities per
node (in terms of communication, computation and storage) so
that it is scalable to large-scale sensor networks. For convenience,
we mainly consider the tracking of a single target system, as the
tracking of multiple targets can be achieved by a multiple number
of single target trackers.We consider the scenariowhere the target
system is measured by a small subset of active sensors at each
time instant, while the rest of the sensors are idle. The set of
active sensors is allowed to vary for each time. The use of idle
nodes is motivated by applications where only a small fraction of
sensors are able tomeasure information for a particular system. For
example, a surveillance network may be responsible to monitor
certain types of targets over a large geographical area. A moving
target may be observed only by a small number of sensors around
it, but the information about it may need to be distributed among
the whole network so that the target can be tracked as it traverses
within the network.

Following the standard (central) KF approach, we also divide
the DKF problem into two steps, a maximum likelihood estimation
(MLE) step and a one-step forward prediction step. The core tech-
nical issue is how to carry out the MLE step in a fully distributed
manner. For this, we propose a fully distributed maximum likeli-
hood estimation (DMLE) algorithm. Under the assumption that the
communication graph for the sensor network is acyclic (i.e. it is a
tree graph), the algorithm delivers the same (optimal) estimate as
given by a central MLE algorithm, but with the advantage of fast
convergence. That is, the proposed DMLE algorithm converges in
a finite number of iterations (this number equals the maximum
diameter of the graph). For sensor networkswith a cyclic graph,we
can apply a distributed depth-first-search (DFS) algorithm to con-
vert the given graph to a spanning tree before applying the DMLE
algorithm. We will show that the proposed DKF algorithm, which
is based on the aforementioned DMLE algorithm, enjoys a number
of nice properties, including low computational, communicational

and storage complexities, robustness against transmission loss and
delay and asynchronous implementability. The algorithm can run
in either a point-to-point communication mode between neigh-
bouring sensors (for better privacy) or in a broadcast mode (for
lower communication burden).

We emphasize that the above target tracking setting is used to
motivate the proposed DKF algorithm. Other applications of the
proposed DKF algorithm include cascading failure monitoring in a
power network, vehicle tracking in a transportation network, fire
monitoring in a forest, etc. In particular, we will study the appli-
cation to distributed field estimation in detail. To help illustrate
the proposed DKF, two simulation examples will be given, one on
single and multiple target tracking and one on distributed field
estimation.

The rest of the paper is organized as follows: Section 2 formu-
lates the DKF problem; Section 3 gives the proposed DKF algo-
rithm; Section 4 details a number of properties of this algorithm;
Section 5 discusses its application to distributed field estimation;
Section 6 demonstrates the algorithm via some simulation exam-
ples; and Section 7 concludes the paper.

2. Problem formulation

Consider a dynamic model for a target system described by

x(t + 1) = A(t)x(t) + w(t), (1)

where t = 0, 1, . . . is the time index, x(t) ∈ Rn is the state,
w(t) ∈ Rn is a zero-mean i.i.d. Gaussian noise with covariance
W (t) ≥ 0, andA(t) ∈ Rn×n is the (possibly) time-varying transition
matrix. The initial state x(0) is an independent Gaussian variable
with mean x0 and covariance P0 > 0.

The target system is measured by a network of sensors which
can be represented by a graph G(t) = {V(t), E(t)} with a set of
nodes V(t) and a set of edges E(t) ⊂ {(i, j) : i ̸= j, i, j ∈ V(t)}. The
set V(t) = I(t) ∪ S(t), where S(t) is a set of sensing nodes with
measurements and I(t) is an idle set consisting of nodes without
measurements. Each node i ∈ S(t) has a measurement:

yi(t) = Ci(t)x(t) + vi(t), (2)

where yi(t) ∈ Rri , Ci(t) ∈ Rri×n is the (possibly) time-varying
measurement vector, vi(t) is the measurement noise which is a
zero-mean i.i.d. Gaussian noise with covariance Ri(t) > 0. Stacking
up all the measurements, we get

y(t) = C(t)x(t) + v(t). (3)

The covariance of v(t) is R(t) = diag{Ri(t)}. It is assumed through-
out the paper that the system with (1) and (3) is observable.

We assume that G(t) is undirected and acyclic. A graph is called
undirected if each edge is undirected. A graph is called acyclic if
it is connected and has no loops, i.e., it is a tree graph. We will
show how to deal with cyclic graphs later. Denote by Ni(t) the set
of neighbouring nodes connected to node i, and denote by |Ni(t)|
the cardinality of Ni(t). We assume that |Ni(t)| ≪ |V(t)| for each
i ∈ V(t). We denote by d(t) the diameter of the graph G(t), which
is the length of the longest path between two nodes.

For notational convenience, we will suppress the time depen-
dence of the system parameters (A(t), C(t),W (t), R(t)) as well as
those of the network graph (G(t), V(t), I(t), S(t), E(t), Ni(t), d(t)).
In addition, with some abuse of notation, i ∈ G means ∈ V , and
(i, j) ∈ G means (i, j) ∈ E .

It is well known (Anderson & Moore, 1979) that the optimal
state estimation, in the maximum likelihood sense, is given by the
celebrated Kalman filter (KF), which we will call central Kalman
filter. Given the system model (1) and the measurement model
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