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a b s t r a c t

Identification of the parameters of stable linear dynamical systems is a well-studied problem in the
literature, both in the low and high-dimensional settings. However, there are hardly any results for
the unstable case, especially regarding finite time bounds. For this setting, classical results on least-
squares estimation of the dynamics parameters are not applicable and therefore new concepts and
technical approaches need to be developed to address the issue. Unstable linear systems arise in key real
applications in control theory, econometrics, and finance.

This study establishes finite time bounds for the identification error of the least-squares estimates for
a fairly large class of heavy-tailed noise distributions, and transitionmatrices of such systems. The results
relate the time length (samples) required for estimation to a function of the problem dimension and
key characteristics of the true underlying transition matrix and the noise distribution. To establish them,
appropriate concentration inequalities for random matrices and for sequences of martingale differences
are leveraged.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Identification of the transition matrix in linear dynamical sys-
tems has been extensively studied in the literature for the stable
case (Ljung, 1999; Lütkepohl, 2005; Söderström & Stoica, 1989).
Further, new work has also addressed this topic under a high-
dimensional scaling, with additional assumptions on sparsity of
the parameters imposed on it (Basu & Michailidis, 2015; Zorzi &
Chiuso, 2017; Zorzi & Sepulchre, 2016). However, in settingswhere
the underlying dynamics are not stable, this problem has not been
adequately studied. A key issue that arises in this case is that
the magnitude of the state vector explodes with high probability,
exponentially over time (Lai & Wei, 1985). Nevertheless, identifi-
cation of the dynamics in the non-stable case is of interest due to a
number of applications that give rise to such dynamics. In addition
to adaptive control (Bertsekas, 1995; Kailath, Sayed, Hassibi, &
Linear estimation. Prentice Hall, 2000; Kumar & Varaiya, 2015;
Söderström, 2012), these applications include a class of identifica-
tion problems involving asset bubbles and high inflation episodes
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(Alogoskoufis & Smith, 1991; Engsted, 2006; Garcia, Perron, et
al., 1991; Giacomini & White, 2006; Juselius & Mladenovic, 2002;
Nielsen, 2010, 2008; Pesaran, 2010; Pesaran & Timmermann, 2002,
2005; Stock & Watson, 1996, 1998).

Most existing work on the topic provides asymptotic results
on the convergence (Lai & Wei, 1985), as well as the limit distri-
bution (Buchmann & Chan, 2013; Buchmann, Chan, et al., 2007)
of the model parameters. Specifically, early work investigated the
limit distribution of the state vector under a set of restrictive
assumptions on the dynamics matrix (Anderson, 1959). Ensuing
work dealt with the accuracy of identification in infinite time, for a
class of structured transition matrices (Lai & Wei, 1983a). Further
extensions to more general classes were established by Nielsen
(2005, 2006). Finally, additional asymptotic results together with
the important concept of irregularity of the transitionmatrixwhich
leads to inconsistency, are presented in the literature (Nielsen,
2009). However, finite time (i.e. non-asymptotic) results are not
currently available.

In this work, we consider a linear dynamical system x(t) ∈

Rp, t = 0, 1, . . . that evolves according to the following Vector
Autoregressive (VAR) model

x(t + 1) = A0x(t) + w(t + 1), (1)

starting from an arbitrary initial state x(0), which can be either
deterministic or stochastic. Note that systems of longer but finite
memory can also be written in the above form (Kailath et al.,
2000; Söderström, 2012). We examine the general case where
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the system is not necessarily stable. The key contributions are: (i)
establishing finite time identification bounds for the ℓ2 error of
the least-squares estimates of the transition matrix A0, (ii) under
a fairly general heavy tailed noise (disturbance) process {w(t)}∞t=1.
In addition, the results due to the presence of a heavy-tailed noise
term are of independent interest for the stable case as well. The
novel results established provide insights on how the time length
required for identification scales both with the dimension of the
system, as well as with the characteristics of the transition matrix
and the noise process.

In order to establish results for accurate finite time identifi-
cation of A0, one needs to address the following set of technical
issues. Note that as long as A0 has eigenvalues outside of the unit
circle in the complex plane, the behavior of the Gram matrix of
the state vector is governed by a random matrix. However, when
A0 has eigenvalues both inside and outside of the unit circle, the
smallest eigenvalue of the Gram matrix scales linearly over time,
while its largest eigenvalue grows exponentially, which in turn
leads to the failure of the classical approaches to establish accurate
identification. These issues are addressed in Sections 3.2 and 3.3,
respectively. In the proofs, we leverage selected concentration
inequalities for randommatrices (Tropp, 2012), as well as an anti-
concentration property of martingale difference sequences (Lai &
Wei, 1983b).

The problem of fast accurate identification in unstable systems
has a number of interesting applications. For example, in stochastic
control, this includes the canonical problems of both stabilization,
as well as design of an efficient adaptive policy for linear systems.
First, since the dynamics are governed by unknown transition
matrices, the control action can destabilize the system. Moreover,
the user first needs to have an approximation of the dynamics,
to be able to design a suitable control policy. Therefore, accurate
identification of the dynamics of the transition matrices is neces-
sary, even if they happen to lead to instability of the underlying
system. More importantly, the identification result needs to be
provided within a relative short time period for the user to be
able to design the adaptive policy accordingly. More details are
discussed in Example 1.

Applications of this setting in econometrics and finance also
create the need to obtain finite time theoretic results. For ex-
ample, in macroeconomics, the outstanding performance of the
linear models marked them as a benchmark of forecasting the
market (Giacomini & White, 2006; Pesaran & Timmermann, 2005;
Stock & Watson, 1998). Their applications to the analysis of in-
flationary episodes in a number of OECD,1 countries (Pesaran &
Timmermann, 2005) as well as US stock prices (Engsted, 2006;
Lin & Michailidis, 2017) are available in the literature. The former
study establishes the structural non-stationarity of the process,
where the latter verifies the explosive behavior of speculative bub-
bles. In particular, if a technology market is capable of important
innovations with uncertain outcomes, it has been argued (Pesaran,
2010) that a bubble is very likely to emerge.

Another application involving unstable dynamics deals with
episodes of hyperinflation. For example, Juselius and Mladenovic
(2002) consider the case of (former) Yugoslavia and use data on
various economic indicators to gain insights into the dynamics
of the late 1990s episode. The analysis identifies wages, price
level expectations, and currency depreciation as the key factors.
In follow-up work, infinite time analysis techniques were used
(Nielsen, 2010), but as emphasized in the original work (Juselius
&Mladenovic, 2002) ‘‘hyperinflation episodes almost by definition
are short ’’. Therefore, the small sample size available can easily lead
to incorrect inference, while finite time guarantees are informative
about the sample size needed tomakeprecise statements about the

1 Organization for economic co-operation and development.

effects of different macroeconomic factors. Another hyperinflation
episode from Germany in the early 1920s is studied by Nielsen
(2008).

Recently, the problem of forecasting non-stationary mixing
(Kuznetsov & Mohri, 2014, 2017), and non-mixing (Kuznetsov &
Mohri, 2015) time series has received attention, assuming the loss
function employed is bounded. Unstable VARmodels are a special,
yet interesting, case of non-stationary time series. However, the
problem of estimation/identification is not still addressed in the
existing literature. Moreover, the results on forecasting are not
applicable to the identification problem, since the least-squares
loss function used in that study is not bounded. On the other hand,
the obtained results on identification are applicable to forecasting.

The remainder of the paper is organized as follows. In Section 2
we provide a rigorous formulation of the problem, introduce the
identification procedure, and outline examples that require accu-
rate identification but the system cannot assumed to be stable.
The contributions are discussed in Section 3, where we study
different scenarios. First, we provide identification results on (non-
stationary) stable linear systems in Section 3.1, followed by the
explosive case (Section 3.2). Finally, we study the accurate iden-
tification of the dynamics for general systems in Section 3.3.

1.1. Notations

The following notation is used throughout this paper. For a
matrixA ∈ Cp×q,A′ denotes its transpose.When p = q, the smallest
(respectively largest) eigenvalue of A (in magnitude) is denoted by
λmin(A) (respectively λmax(A)). For γ ∈ R, γ > 0, x ∈ Cq, define
the norm ||x||γ =

(∑q
i=1|xi|

γ
)1/γ . For γ = ∞, define the norm

||x||∞ = max1≤i≤q|xi|.
We also use the following notation for the operator norm of

matrices. For β, γ ∈ (0,∞] , A ∈ Cp×q let,

|||A|||γ→β = sup
v∈Cq\{0}

||Av||β
||v||γ

.

Whenever γ = β , we simply write |||A|||β . To show the di-
mension of manifold M over the field F , we use dimF (M). The
sigma-field generated by random vectors X1, . . . , Xn is denoted by
σ (X1, . . . , Xn). Finally, the symbol∨ denotes themaximum of two
or more quantities.

2. Problem formulation and preliminaries

The system {x(t)}∞t=0 evolves according to (1), while the un-
known transition matrix A0 ∈ Rp×p is not assumed to be stable,
i.e. the eigenvalues of A0 do not necessarily lie inside the unit
circle. Further, {w(t)}∞t=1 is the sequence of independent mean-
zero noise vectors with covariance matrix C , i.e. E [w(t)] = 0, and
E
[
w(t)w(t)′

]
= C .

Remark 1. The results established also hold if the noise vectors
are martingale difference sequences. Further, the generalization
to heteroscedastic noise, where the covariance matrix C is time
varying, is rather straightforward.

The objective is to identifyA0, using the least-squares estimator.
One observes the state vector during a finite time interval, {x(t)}nt=0,
and defines the sum-of-squares loss function

Ln (A) =

n−1∑
t=0

||x(t + 1) − Ax(t)||22.

Then, A0 is estimated by Â(n), which is the minimizer of the above
sum-of-squares; Ln

(
Â(n)
)

= minA∈Rp×pLn (A).
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