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a b s t r a c t

This paper focuses on the reinforcement of the quantitative performance in interconnected dynamical
systems. The following problem is addressed that concerns dissipativity reinforcement via interconnec-
tion: Find a class of subsystems and their interconnection rule such that the L2 gain bound of the entire
interconnected system is reduced comparedwith that of each individual subsystem.We assume that each
subsystem has a special passivity property that is characterized by two parameters, and has a bounded
L2 gain. Then, the feedback connection and the more general interconnection of the subsystems are
expressed by the transition of the two parameters inheriting the same passivity property. In addition,
the L2 gain bound of the entire interconnected system, estimated with the parameters, is strictly reduced
and becomes less than that of each subsystem. Finally, special interconnection rules are considered to
show that the scale-expansion of the interconnected system, i.e., increasing the number of subsystems,
gradually reduces the L2 gain bound.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

A large-scale interconnected system is constructed froma num-
ber of subsystems that are internally connectedwith a specific rule.
The analysis and design of such systems have been investigated in
many studies by Antsaklis et al. (2013), Arcak and Sontag (2008),
Bai, Arcak, and Wen (2011), Goodwine and Antsaklis (2013), Moy-
lan and Hill (1978), Šiljak (1991), Stoustrup (2009) and Tan and
Ikeda (1990). Onemotivating application is next generation power
networks, which can be composed of a large number of renewable
energy resources, such as solar, wind, and thermal generators.
Because such generators are connected to an existing baseline
network one after another, the entire network system is gradually
built up and expanded in scale. At any stage of the expansion, the
entire system should be stable and achieve a high performance
in suppressing disturbances occurring in renewable energy re-
sources. A final goal of this paper is to develop a systematicmethod
for design and analysis of general expanding systems.

System design and control problems concerning general large-
scale and expanding systems have previously been studied. For
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example, the studies by Antsaklis et al. (2013), Goodwine and
Antsaklis (2013), Stoustrup (2009) and Tan and Ikeda (1990) have
addressed the problems of stability analysis and stabilization of
such expanding systems. They propose various design and control
concepts, namely expanding construction by Tan and Ikeda (1990),
plug and play control by Stoustrup (2009), and compositional
stabilization by Antsaklis et al. (2013) and Goodwine and Antsaklis
(2013). In addition, the passivity theorem (Zames, 1966) is utilized
for the stabilization of interconnected systems. See, for example,
the works by Arcak, Meissen, and Packard (2016), Bai et al. (2011),
Hatanaka, Chopra, Fujita, and Spong (2015) and Moylan and Hill
(1978). In the passivity-based design and analysis, the entire inter-
connected system inherits the passivity of the subsystems if they
are connected according to a specific rule. We note that such con-
ventional works aim not to impair the stability or not to deteriorate
the performance of the entire system via the interconnection or
scale-expansion, i.e., the increase of the number of subsystems. The
aim of this paper is to determine a design strategy such that the
performance of the entire system is strictly and gradually improved
via the interconnection and scale-expansion.

In this paper, the following problem concerning dissipativity
reinforcement is formulated for a large-scale interconnected sys-
tem: Find a class of subsystems and their interconnection rule
such that the L2 gain bound of the entire interconnected system
is reduced compared with that of each individual subsystem. We
assume that each subsystem has a special passivity property that
is characterized by two parameters, and has a bounded L2 gain.
Then, the feedback connection and the more general interconnec-
tion of the subsystems are expressed by the transition of the two
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parameters inheriting the same passivity property. In addition, the
L2 gain bound of the entire interconnected system, estimated with
the parameters, is strictly reduced via the interconnection and its
scale-expansion.

In the previous work by the present authors (Urata & Inoue,
2016, 2018), a special class of dissipative systems has been pro-
posed. Problems regarding dissipativity reinforcement via feed-
back and other special interconnections have been formulated, and
their solutions are presented by Urata and Inoue (2016, 2018). It
has been shown that interconnected systems composed of special
dissipative subsystems reduce the L2 gain bound compared with
each individual subsystem. In this paper, the result concerning the
feedback connection is first further refined and generalized. Details
of this generalization are provided in Section 3.3 of this paper. Next,
a more general interconnection than the special one studied by
Urata and Inoue (2016) is considered. Then, a general condition for
dissipativity reinforcement is derived and a quantitative evalua-
tion of the L2 gain bound is presented. The analysis and evaluations
are given in Section 4.

Notation: R+ := [0, ∞). The symbol 1k,ℓ represents a k× ℓ matrix
where every element is equal to one (this is said to be an all-ones
matrix). The symbol C(c, r) represents a disk on the complex plane
whose center and radius are given by (c, 0) and r , respectively:

C(c, r) := {x + yi ∈ C | (x − c)2 + y2 ≤ r2}.

The symbols L2 and L2e denote the L2 space and the extended L2
space, respectively. Let ∥·∥ be the Euclidean normof a vector. Then,
for v ∈ L2 the symbol ∥v∥L2 denotes the L2 norm. For v ∈ L2e and
T ∈ R+, the symbol ∥v∥L2,T denotes the finite time L2 norm:

∥v∥L2,T :=

(∫ T

0
∥v(τ )∥2dτ

) 1
2

.

For a causal and L2-stable systemΣ , the symbol ∥Σ∥L2 denotes the
L2 gain.

2. Preliminaries: system description and definition of dissipa-
tivity

2.1. Feedback and general interconnected systems

In this paper, we consider a feedback system ΣFB, and a more
general interconnected systemΣNW, which are illustrated in Fig. 1.
They are composed of two subsystems Σi, i ∈ {1, 2}, and of N
subsystems Σi, i ∈ {1, 2, . . . ,N}, respectively. A subsystem Σi is a
single-input-single-output (SISO) system, described as

Σi : yi = Σ̄iui,

where Σ̄i : L2e → L2e is a causal operator, and yi ∈ R and ui ∈ R
denote the output and input of Σi, respectively. If Σi is a linear
time-invariant (LTI) system, then it can be described by the transfer
function representation as

Σi : Ȳi(s) = Σ̄i(s)Ūi(s),

where Σ̄i ∈ C → C is the transfer function of Σi, and Ȳi and Ūi
are the Laplace transformations of yi and ui, respectively. Although
only the SISO system is studied in this paper, the results can be
extended to multiple-input-multiple-output systems.

The negative feedback system ΣFB is defined as follows. Let
w ∈ R and z ∈ R be the external input and control output of ΣFB,
respectively. Then, ΣFB is constructed by the negative feedback
connection as

u1 = w − y2 (1)
u2 = y1 = z. (2)

Fig. 1. Feedback system ΣFB and general interconnected system ΣNW . Two dy-
namical systems Σ1 and Σ2 constitute a feedback system as illustrated in Fig. (a).
Dynamical systems Σi , i ∈ {1, 2, . . . ,N} are internally connected to each other
according to a specified rule. The constructed network system is expressed as the
feedback form as illustrated in Fig. (b).

The general interconnected system ΣNW is defined as follows.
In the same manner as the description of ΣFB, let w and z be the
external input and control output of ΣNW, respectively. Further,
define u := [ u1 u2 · · · uN ]

T and y := [ y1 y2 · · · yN ]
T. Then, the

interconnection rule in Σi, i ∈ {1, 2, . . . ,N} is given as

u = Ew − Ly, (3)

where E ∈ RN×1 and L ∈ RN×N are constant matrices. Here,
E assigns the input port of w, while L represents a rule for the
interconnection ofΣi, i ∈ {1, 2, . . . ,N}. We suppose that z is given
by

z = ETy, (4)

which is utilized for the performance evaluation of ΣNW. We as-
sume that E is of full column rank, and satisfies

ETE = 1.

In otherwords, E is normalized. In addition,we assume further that

ETL ̸= 0, LE ̸= 0

holds. If this does not hold, then the effect ofw cannot be controlled
by the feedback input Ly or the information of z cannot be included
in the feedback input. In this sense, this is a necessary assumption
for the dissipativity analysis of ΣNW.

In this paper, we assume that ΣFB and ΣNW are well-posed,
i.e., for any w ∈ L2e, there exist unique solutions y1 and y2 of ΣFB
and y of ΣNW that belong to L2e.

2.2. Dissipativity

In order to quantitatively analyze Σi, ΣFB, and ΣNW, dissipativ-
ity (e.g. Hill and Moylan (1976); Willems (1972)) is defined and
studied in this subsection.

There have been various definitions proposed for dissipativity
(see, e.g. the book by Brogliato, Lozano, Maschke, Egeland, et al.
(2006)). The dissipativity considered in this paper is defined as
an integral quadratic constraint (IQC) that is specialized from the
definition by Hill and Moylan (1976). For a matrix Π ∈ R2×2,
consider

s(Π, ui, yi) :=

[
ui
yi

]T

Π

[
ui
yi

]
.
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