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a b s t r a c t

In this paper, we consider the problem of coordinating self-interested interacting dynamical systems
by means of a distributed economic MPC framework. The self-interest of the systems is reflected by an
individual local objective function each agent is trying to minimize, while cooperation is required with
respect to coupling constraints and an asymptotic cooperative goal, which is represented by a particular
steady state of the overall system. Our basic premise is that this steady state, which fulfills the cooperative
goal, is not known a priori but has to be negotiated online, while already taking control actions. For
the purpose of determining this steady state in a distributed way, arbitrary distributed computation
algorithms can be incorporated into the proposed framework. We show that satisfaction of coupling
constraints and convergence to the desired overall steady state can be established. Examples for an
asymptotic cooperative goal include synchronization under conflicting objectives or sensor coverage,
which are both studied in the work at hand and are also illustrated by numerical simulations.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, networked systems have gained more and
more attention in the control community. Advances in (wireless)
communication technology result in increasingly complex inter-
connected systems such as groups of vehicles or electric networks,
which in turn require specific control algorithms to coordinate
them.Model predictive control (MPC) is an appealing control tech-
nique for such complex problems, since it ensures satisfaction of
certain constraints and incorporates some performance criterion
in terms of a cost function. However, applying a centralized model
predictive controller to a distributed system is often not possible
due to the large scale of the system and information not being
available to a central unit. Besides, relying on a single central
unit is error-prone and restricts scalability of the system. To over-
come these issues, a large number of distributed MPC schemes
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have been proposed, see Christofides, Scattolini, de la Pena, and
Liu (2013), Maestre and Negenborn (2013), Müller and Allgöwer
(2017) and Scattolini (2009) for an overview. Many applications
such as distributed power generation, multi-vehicle coordination
or cooperating robot systems consist of a setup of uncoupled sys-
tem dynamics but possibly coupling constraints in the state and
input variables of the separate systems. Various distributed MPC
algorithms have been proposed that achieve setpoint stabiliza-
tion in such scenarios, for example in Dunbar and Murray (2006)
with additional consistency constraints, in Grüne andWorthmann
(2012) and Richards and How (2007) through the use of a certain
sequential optimization algorithm, and in Spudic and Baotic (2013)
via explicit MPC techniques. In Keviczky and Johansson (2008) and
Müller, Reble, and Allgöwer (2012), distributed MPC algorithms
were proposed for more general control problems such as con-
sensus and synchronization. All of these mentioned algorithms are
formulated in the framework of tracking MPC, in which the cost
function is positive definite with respect to the specific setpoint or
set to be stabilized.

However, stabilization of some setpoint might not be the pri-
mary control objective, but rather optimal operation with respect
to a real performance criterion such as working costs or profit,
which are in general not positive definite with respect to some
steady state. For this reason, a more general MPC framework
termed economic MPC was proposed in Angeli, Amrit, and Rawl-
ings (2012), which allows for an arbitrary (economic) cost function
that is not constrained to be positive definite with respect to the
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steady state. Unlike in tracking MPC, the economic MPC closed-
loop system does not necessarily converge to a steady state, but
there are numerous results on properties such as performance or
fulfillment of average constraints, and under certain dissipativity
properties of the system also stability and convergence results for
this MPC framework available (see, e.g. Angeli et al., 2012, Grüne,
2013, Müller, Angeli, Allgöwer, Amrit, & Rawlings, 2014). Applying
economic MPC in a distributed setup was proposed in Driessen,
Hermans, and van den Bosch (2012) and Lee and Angeli (2014),
where the overall steady state was assumed to be known and used
as a terminal constraint.

The contribution of this work is a distributed economic MPC
scheme for coordination of interacting systems under conflicting
economic objectives. This antagonism between the requirement to
achieve some desired coordinated behavior of the overall system
and the self-interest of the individual systems of minimizing their
individual running cost – the conflicting economic objective – will
be the main theme of this work. More specifically, as for the coor-
dination requirementswe consider both transient coordination re-
quirements, which are expressed in terms of coupling constraints
on the system states and inputs and have to be satisfied at all times,
and an asymptotic coordination requirement, which requires the
systems to ultimately converge to a particular steady state of the
overall system representing a certain cooperative goal. In contrast
to Driessen et al. (2012) and Lee and Angeli (2014), our basic
assumption is that this particular overall steady state is not known
a priori but has to be negotiated between the systems online.
Additionally, we assume that communication between systems is
not instantaneous but requires time, which is why the systems
already have to perform control actions while still negotiating the
overall steady state satisfying the cooperative goal. The presented
approach covers a large class of problems involving the coordina-
tion of self-interested systems. Coordination requirements that fit
the proposed framework include, e.g., connectivitymaintenance as
transient coordination requirement, and asymptotic coordination
requirements such as cost-optimal synchronization under con-
flicting objectives or sensor coverage. To the best of the author’s
knowledge, the proposed approach uniquely features distributed
model predictive control subject to local, economic cost criteria
while at the same time negotiating and eventually converging
to an initially unknown overall steady state, which fulfills some
asymptotic cooperative goal.

Some of the results of this paper have appeared in the
conference versions (Köhler, Müller, & Allgöwer, 2016; Müller &
Allgöwer, 2014). In the work at hand, we give a more compre-
hensive and holistic exposition of the proposed framework and
its facets, including all proofs that have partly been left out in
the conference versions. Moreover, we present the framework in a
slightly generalized but much more flexible form. In particular, as
opposed to Köhler et al. (2016) and Müller and Allgöwer (2014),
in this work we allow for an arbitrary distributed coordination
algorithm (e.g. distributed optimization algorithms or distributed
controllers from classical multi-agent control) to be employed for
online negotiation of an overall steady state satisfying an arbitrary
cooperative goal. As such, the proposed framework allows to
combine the capabilities of economic MPC for actual control of
the individual systems with numerous and well-established tools
from distributed optimization and multi-agent control, which is
demonstrated in two example applications in Section 5.

The remainder of this paper is structured as follows. In Sec-
tion 2, a detailed system description and problem statement are
given. The proposed distributed economicMPC algorithm in its full
generality is presented and analyzed in Section 3. This algorithm
simplifies enormously when no transient coupling constraints are
considered,which iswhywe treat this special case in Section 4 sep-
arately. Two example applications (sensor coverage and optimal
synchronization) including numerical simulations are presented in
Section 5, and some concluding remarks are given in Section 6.

2. Preliminaries and setup

2.1. Notation

For a set A ⊆ Rn and a point x ∈ Rn, the distance between
the point x and the set A is defined as |x|A := infz∈A|x − z|. For
sets A,B ⊆ Rn, the Minkowski set addition and set difference are
defined byA⊕B := {a+b | a ∈ A, b ∈ B}, andA⊖B := {x ∈ Rn

|

{x}⊕B ⊆ A}, respectively. Let I≥0 denote the set of all nonnegative
integers and I[a,b] the set of all integers in the interval [a, b] ⊂ R.
The unit ball in Rn is denoted by B1, i.e., B1 := {x ∈ Rn

| |x| ≤ 1}.
A bounded sequence v : I≥0 → Rnv is said to be essentially
convergent to v ∈ Rnv if

∀ε > 0 : lim sup
T→+∞

card({0 ≤ t ≤ T : |v(t) − v| ≥ ε})
T + 1

= 0.

Furthermore, as in Angeli et al. (2012), the set of asymptotic aver-
ages of v is defined as

Av[v] := {v̄ ∈ Rnv : ∃tn → +∞ : lim
n→∞

∑tn
k=0 v(k)
tn + 1

= v̄}.

Note that Av[v] is nonempty (as bounded sequences in Rnv have
limit points), but it need not be a singleton in general. We use
undirected graphs to represent different kinds of interconnections
between agents. A graph G = (V, E) consists of vertices V =

{1, . . . , P} representing systems and edges E = {(i, j) ∈ V × V}

representing interconnections between systems. Two systems i, j
are called neighbors if they are connected by an edge, i.e, if (i, j) ∈ E .
Denote the set of all neighbors of system i by Ni(G) := {j ∈ V |

(i, j) ∈ E}. A graph G is called complete if any two vertices are
neighbors.

2.2. System description and problem statement

Consider a network of P dynamical systems. Each agent is
modeled as a discrete-time linear system of the form

xi(t + 1) = Aixi(t) + Biui(t), xi(0) = xi0, (1)

with xi(t) ∈ Xi ⊆ Rni and ui(t) ∈ Ui ⊆ Rmi for all t ∈ I≥0, and
the pair (Ai, Bi) is assumed to be stabilizable. The local state and
input constraints for each system (xi(t), ui(t)) ∈ Zi ⊆ Xi × Ui
are assumed to be compact and convex. Denote by Si the set of all
steady states for each agent i, i.e., Si = {(xi, ui) ∈ Xi × Ui | Aixi +
Biui = xi}. For the overall system, the state and input variables
are written in stacked form as x(t) = [x1(t)⊤, . . . , xP (t)⊤]

⊤
∈ Rn

and u(t) = [u1(t)⊤, . . . , uP (t)⊤]
⊤

∈ Rm, where n =
∑P

i ni and
m =

∑P
i mi. The corresponding dynamics result in x(t + 1) =

Ax(t) + Bu(t), x(0) = [x⊤

10, . . . , x
⊤

P0]
⊤, (x(t), u(t)) ∈ Z with A =

diag(A1, . . . , AP ), B = diag(B1, . . . , BP ), Z = {(x, u) ∈ Rn
× Rm

|

(xi, ui) ∈ Zi ∀i ∈ I[1,P]} and the set of steady states S = {(x, u) ∈

Rn
× Rm

| (xi, ui) ∈ Si ∀i ∈ I[1,P]}. Let for any such set of overall
states and inputs A ⊆ Rn

× Rm the projection of the set A on
Rn and Rm be denoted by AX ⊆ Rn and AU ⊆ Rm, respectively,
i.e., AX := {x ∈ Rn

| ∃u ∈ Rm (x, u) ∈ A} and AU := {u ∈ Rm
|

∃x ∈ Rn (x, u) ∈ A}.
Each agent acts self-interested and aims at minimizing its in-

dividual local cost function ℓi : Zi → R, which is assumed to
be continuous. Cooperation between the agents is required with
respect to transient coordination requirements and asymptotic
coordination requirements representing a cooperative goal. The
transient coordination requirements are formulated as pointwise-
in-time coupling constraints C ⊆ Rn

× Rm on the states and
inputs of the form (x, u) ∈ C and have to be satisfied at all times,
i.e., (x(t), u(t)) ∈ C for all t ∈ I≥0, where the set C is assumed
to be convex. The asymptotic cooperative goal is represented by
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