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a b s t r a c t

We consider the controllability problem for finite-dimensional linear autonomous control systems, under
state constraints but without imposing any control constraint. It is well known that, under the classical
Kalman condition, in the absence of constraints on the state and the control, one can drive the system
from any initial state to any final one in an arbitrarily small time. Furthermore, it is also well known
that there is a positive minimal time in the presence of compact control constraints. We prove that,
surprisingly, a positive minimal time may be required as well under state constraints, even if one does
not impose any restriction on the control. This may even occur when the state constraints are unilateral,
like the nonnegativity of some components of the state, for instance. Using the Brunovsky normal forms
of controllable systems, we analyze this phenomenon in detail, that we illustrate by several examples.We
discuss some extensions to nonlinear control systems and formulate some challenging open problems.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Let n ∈ N∗ andm ∈ N∗ be integers, withm < n. Let A be an n×n
matrix and B be an n × m matrix, with real coefficients, satisfying
the Kalman condition

rank(B, AB, . . . , An−1B) = n. (1)
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Throughout the paper, we consider the linear autonomous control
system

ẏ(t) = Ay(t) + Bu(t) (2a)

with some initial condition

y(0) = y0 (2b)

where y(t) ∈ Rn is the state and u(t) ∈ Rm is the control. In order
to avoid confusion, we will sometimes write y(t; u) the solution of
(2). It is well known that, given any two points y0 and y1 of Rn and
given any time T > 0, there exists a control u ∈ L∞((0, T ),Rm)
such that the corresponding trajectory, solution of (2), satisfies
y(T ) = y1. In other words, one can pass from any initial condition
to any final one in arbitrarily small time. Of course, this is at the price
of using controls that have a L∞-norm that is larger as the transfer
time T is smaller (Seidman & Yong, 1996). Therefore, under the
Kalman condition (1), if there is no state and control constraint in
the control problem, then the minimal controllability time, defined
as the infimum of times required to pass from y0 to y1, is equal
to 0.

Now, we consider a connected subset C ⊂ Rn with nonempty
interior, standing for state constraints that we want to impose to
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the controllability problem, and we address the following ques-
tion:

Given any two points y0 and y1 in C, is it possible to steer the
control system (2) from y0 to y1 in arbitrarily small time T , while
guaranteeing that y(t) ∈ C for every t ∈ [0, T ], or is there a
positive minimal time required?

We stress that we impose no control constraint, i.e., u(t) ∈

Rm, but we impose a state constraint. It is surprising that this
apparently simple question has not been investigated before. It is
the main objective of this paper to explore it.

Before going further, it is useful to note that controllability
under control constraints but without state constraints is well
understood (see Brammer, 1972) and can be studied by usual
optimal control methods (see Lee & Markus, 1967; Trélat, 2005).
Recall that, when there is a control constraint u(t) ∈ Ω with Ω a
compact subset of Rm then the set AccΩ (y0, T ) of accessible points
from y0 in time T > 0 with controls u ∈ L∞((0, T ), Ω) is compact
and convex and evolves continuously with respect to T : hence in
this case the minimal time required to pass from y0 to y1 ̸= y0 is
always positive.

Here, in contrast, we want to investigate the question of know-
ing whether the minimal time may be positive when imposing
state constraints but no control constraint. Of course, in order to
address this question we may first wonder whether the target
point y1 is reachable or not from the initial point y0. This is the
question of controllability under state constraints, which is not the
objective of the present paper but on which we shortly comment
hereafter.

Controllability under state constraints. When C is a proper
subset of Rn, the question of controllability under the state con-
straint y(·) ∈ C is complicated. Even under the Kalman condition,
very simple state constraints can immediately make fail the con-
trollability property. For instance, take the control system in R2

ẏ1(t) = y2(t), ẏ2(t) = u(t),

and the state constraint y2(t) ⩾ 0 on the second component of
the state. For any trajectory, the first component y1(t) must be
nondecreasing, and then obviously one cannot pass from any point
to any other.

Controllability under state constraints has not been much in-
vestigated in the literature, certainly due to the difficulty of the
question, even for linear control systems. Early conditions were
given in Krastanov and Veliov (1992), with the idea of deriving
conic directions of expansion of the reachable set. Amore achieved
version appears in Krastanov (2008), where the author states a
necessary and sufficient condition for small-time controllability of
linear control systems under conic state constraints. The verifica-
tion of such algebraic conditions (given in terms of convex hull)
remain however quite technical. In Heemels and Camlibel (2007),
controllability is established under appropriate invertibility condi-
tions of the transfer matrix and adequate Hautus test conditions.
We also mention the recent paper (Le & Marigonda, 2017) for
sufficient controllability conditions for nonlinear control systems.

In this paper, our objective is, when we already know that
y1 can be reached from y0 under state constraints, to investigate
whether the minimal time may be positive or not, while keeping
the connecting trajectory in the set C .

It is anyway interesting to note that there is a specific situation
under which controllability under state constraints can easily be
proved, within a transfer time that may however be quite large.
This is when y0 and y1 are steady-states (a point ȳ ∈ C is a steady-
state if there exists ū ∈ Rm such that Aȳ + Bū = 0). This situation
is studied in Section 4.1. More precisely, we prove in this section
that, under a slight condition on the set C (which is satisfied if C
is convex), it is possible to steer the control system (2) from any

steady-state y0 ∈ C̊ to any steady-state y1 ∈ C̊ in time sufficiently
large, while ensuring that the corresponding trajectory remains in
the interior C̊ of the set C . The proof is done by an iterative use of a
local controllability result along a path of steady-states (whence
the possibly large transfer time). The question is then to know
whether one could find a control forwhich this transfer timewould
be arbitrarily small.

Minimal controllability time.We investigate theminimal time
problem for the system (2) under state constraints y(·) ∈ C ,
without control constraint. Given y0, y1 ∈ C , we define TC (y0, y1)
as the infimum of times required to pass from y0 to y1 under the
state constraint C (with an unconstrained L∞ control), with the
agreement that TC (y0, y1) = +∞ if y1 is not reachable from y0.
More precisely, if y1 is reachable from y0, with L∞ controls, we
define

TC (y0, y1) = inf
{
T > 0 | ∃u ∈ L∞((0, T ),Rm) s.t.

the solution y(t) of (2) satisfies
y(T ) = y1 and ∀t ∈ [0, T ], y(t) ∈ C

}
.

It is obvious that if r = rank B = n then TC (y0, y1) = 0 for any
y0 and y1 belonging to a same connected component of C . More
precisely, given any time T > 0 and any C1-path, ȳ such that
ȳ(0) = y0, ȳ(T ) = y1 and ȳ(t) ∈ C for every t ∈ [0, T ], then any

control ū, satisfying Bū(t) = ˙̄y(t) − Aȳ(t), steers the solution of (2)
to y1 in time T . Hence, in what follows we assume that r < n.

As a first example (more details are given in Example 10 fur-
ther), consider the linear control system

ẏ1(t) = y1(t) + u(t), ẏ2(t) = 2y2(t) + u(t),

under the nonnegativity state constraints y1(·) ⩾ 0, y2(·) ⩾ 0, and
take the terminal conditions y0 = (1, 1/2)⊤ and y1 = (2, 1)⊤. Both
points are steady-states, C = [0, +∞)2 is convex and the Kalman
rank condition is satisfied. Hence, it is possible to steer the system
from y0 to y1 with a trajectory satisfying the state constraints (see
Section 4.1). But we claim that this cannot be done in arbitrarily
small time. Here, the value of the minimal time under the state
constraint y(·) ∈ C is TC (y0, y1) = ln(2). In contrast, steering the
control system from y1 to y0 in C can be done in arbitrarily small
time, i.e., we have TC (y1, y0) = 0.

The main result of the paper is the following.

Theorem 1. Let C be a subset of IRn and let y0 ∈ C.

(i) Let y1 ∈ C̊ \ {y0}. Assume that y0 ∈ C̊ and there exists a steady
state ȳ ∈ C̊ . If ȳ and y1 are in a same connected component of(
{y0} + Ran B

)
∩ C̊ , then TC (y0, y1) = 0.

(ii) Assume that C is bounded and let y1 ∈ C \ {y0}. If y1 − y0 ̸∈

Ran(B) then TC (y0, y1) > 0.
(iii) Assume that

C = {y ∈ IRn
| ⟨ℓ, y⟩ = ℓ1y1 + · · · + ℓnyn ⩾ β} (3)

(unilateral and affine state constraint) for some β ∈ IR and for
some generic1 ℓ ∈ IRn

\ {0}.

• If r = rank B > 1 then under a generic2 condition on the
pair (A, B) we have TC (y0, y1) = 0 for any y0, y1 ∈ C̊ .

• If r = 1 or if the above generic condition is not satis-
fied then there exists an open subset C1 ⊂ C such that
TC (y0, y1) > 0 for every y1 ∈ C1.

1 The word generic means here that ℓ belongs to some subset of Rn
\ {0} which

is open and dense.
2 The word generic means here that the pair (A, B) belongs to an open and dense

subset of the set of matrices (A, B) with A (resp. B) an n × n (resp. n × m) matrix.
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