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a b s t r a c t

In this paper, we consider boundary output tracking for a one-dimensional heat equation with external
disturbance at the opposite end of the bar. First, an unknown input infinite-dimensional observer is
designed and an estimate of disturbance is obtained from the observer. Second, with reference signal and
estimate of disturbance, we design a servo system which has bounded solution given that the reference
signal and its derivative are bounded. The output feedback boundary control is then designed by the states
of servo system and observer. It is proved that the state of closed-loop system tracks the state of the
servo system. As a result, the output tracking is included. Finally, some simulation results are presented
to illustrate the effectiveness of the proposed scheme.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Output regulation is most often the main objective for a con-
trol system, which has various applications in military, civil en-
gineering and many other fields. For finite dimensional systems,
there are many classic results presented in different contexts, see,
for instance Callier & Desoer (1980), Davison (1976), Desoer &
Lin (1985) and Francis, 1977, to name just a few. Some output
regulation results have been extended to the systems described
by partial differential equations (PDEs). For this regard, we refer
to Byrnes, Lauko, Gilliam, & Shubov (2000), Hämäläinen & Pohjo-
lainen (2010), Immonen (2007), Pisano, Orlov, & Usai (2011) and
Rebarber & Weiss (2003) and the references therein. Generally
speaking, output regulation for PDEs is a nontrivial generalization
from finite dimensional counterpart. In most of situations, the
external disturbance is supposed to be ‘‘almost known’’, which
is, together with reference signal, generated from an exogenous
model both for finite dimensional systems (Deutscher, 2015) and
infinite dimensional ones (Hämäläinen & Pohjolainen, 2010). To
the best of our knowledge, there are few results on output regula-
tion for PDEs when disturbance dynamics is unavailable. In Pisano
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et al. (2011), the disturbance is supposed to be general but the con-
trol operator is bounded. A typical case is presented in Paunonen
and Pohjolainen (2014) where both input and output operators
are unbounded but the disturbance dynamics is supposed to be
modeled. In this note, we consider output tracking problem for a
heat equationwith general external disturbance at one end and the
control is actuated on the other end. In other words, the control
operator is unbounded and the external disturbance is not from
any exosystem.

The central idea here comes from the active disturbance re-
jection control (ADRC) which is another powerful tool in dealing
with uncertain ODEs and PDEs. The observer in output regulation
to estimate modeled disturbance is generalized to the extended
state observer to estimate the general disturbance in ADRC, and
the feedback control is designed based on the online cancellation of
disturbance. This keeps the energy saving characteristics of output
regulation with modeled disturbance yet extends the generality of
the disturbance. The ADRC has been generalized to stabilization
of PDEs in Guo and Jin (2013) where the disturbance is estimated
by infinitely many ODEs with high gain. Recently in Feng and Guo
(2017), a new kind of observer for stabilization of PDEs is designed
to estimate disturbance, where no high gain is needed. This new
observer is applied to a tracking problem for a one-dimensional
wave equationwith control at one end and disturbance at the other
end in Zhang, Feng, and Chai (2016). Motivated from Feng & Guo
(2017), in this note, we design a state observer which is actually an
extended state observer for a heat equation to estimate both state
and disturbance simultaneously. Another motivation comes from
recent papers (Guo & Guo, 2016; Guo, Guo, & Jin, 2015; Guo, Shao,
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&Krstic, 2017)where output tracking problem for one dimensional
wave system with anti-collocated harmonic external disturbance
has been discussed.

Motivated by the paper aforementioned, in this note, we con-
sider output tracking for a one-dimensional heat equation with
disturbance entering from the left end and control is actuated at
the right, which is governed by the following partial differential
equation:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut (x, t) = uxx(x, t), x ∈ (0, 1), t > 0,
ux(0, t) = d(t), t ≥ 0,
ux(1, t) = U(t), t ≥ 0,
u(x, 0) = u0(x), 0 ≤ x ≤ 1,
ym(t) = u(0, t), t ≥ 0,
yc(t) = u(1, t), t ≥ 0,

(1)

where and henceforth ux denotes the derivative of u(x, t) with
respect to x and ut the derivative with respect to t , U(t) is the
input, ym(t) is themeasurement, u0(x) is the initial value, d(t) is the
external disturbance, and yc(t) is the output to be regulated but is
not measured. Given reference signal yref (t), our target is to design
an output feedback control U(t) so that yc(t) → yref (t) as t → ∞.

The physical meaning of the model (1) is clear. The heat flux
at the left end is supposed to be unknown and we measure the
temperature at this end. The control is designed at the right end
in terms of the measured temperature on the left end and the
reference signal so that the temperature at the right end stabilizes
asymptotically at the level of given reference temperature.

We consider system (1) in the state spaceH = L2(0, 1) with the
norm induced by the inner product given by

⟨f , g⟩H =

∫ 1

0
f (x)g(x)dx, ∀f , g ∈ H. (2)

The following definition of ‘‘exactly observable’’ is Definition 6.1.1
of Tucsnak and Weiss (2009).

Definition 1.1. Let X and Y be complex Hilbert spaces which
are identified with their duals. Suppose that T (t) is a strongly
continuous semigroup on X , with generator A : D(A) → X . X1 is
D(A) with the norm ∥z∥1 = ∥(βI − A)z∥, where β ∈ ρ(A) is fixed.
Consider the differential equation{ż(t) = Az(t),
y = Cz(t),
z(0) = z0 ∈ X1,

where C ∈ L(X1, Y ) is an admissible observation operator for T (t).
Let τ > 0, and letΨτ be the output operator associated with (A, C),
i.e.

(Ψτ z0)(t) =

{
CT (t)z0, for t ∈ [0, τ ],
0, for t > τ.

The pair (A, C) is exactly observable in time τ ifΨτ is bounded from
below:∫ τ

0
∥CT (t)z0∥2

Ydt ≥ Cτ∥z0∥2
X

for some Cτ > 0 and all z0 ∈ X .

Proposition 1.1. System (1) is not exactly observable with d(t) ≡ 0.

Proof. Define the system operator A by{
Af = f ′′,∀f ∈ D(A),
D(A) = {f ∈ H2(0, 1)|f ′(0) = f ′(1) = 0}. (3)

The eigenvalues λn and corresponding eigenfunctions φn of A are
computed as follows:{
λ0 = 0, λn = −n2π2, n = 1, 2, . . .
φ0(x) = 1, φn(x) =

√
2 cos(nπx), n = 1, 2, . . . .

(4)

These eigenfunctions of A form an orthonormal basis for H and A
generates a semigroup eAt . The solution of (1) withU(t) = d(t) = 0
can be written explicitly as

u(x, t) =

∫ 1

0
u0(x)dx +

∞∑
n=1

⟨u0, φn⟩eλntφn(x), (5)

from which

u(0, t) =

∫ 1

0
u0(x)dx +

√
2

∞∑
n=1

⟨u0, φn⟩eλnt . (6)

If we take u0(x) = φn(x), we obtain

u(0, t) =

∫ 1

0
φn(x)dx +

∞∑
j=1

⟨φn, φj⟩eλjtφj(1)

=

∫ 1

0

√
2 cos(nπx)dx +

√
2eλnt =

√
2eλnt ,

and hence∫ τ

0
u2(0, t)dt = 2

∫ τ

0
e2λntdt

=
1

n2π2 (1 − e−n2π2τ ) ≥ Cτ∥u0∥
2,

(7)

which is not true for any Cτ > 0. Therefore, system (1) is not
exactly observable with d(t) ≡ 0. □

Nevertheless, we are still able to design an observer to estimate
both the state and disturbance simultaneouslywith ym(t) = u(0, t)
only, which constitutes a significant contribution of this note.

We proceed as follows. In Section 2, we design an observer
which can recover the state and disturbance simultaneously. A
servo system is therefore designed based on estimation of the
disturbance. In Section 3, we design an output feedback control.
The servo system produces reference signal on the one hand and
bounded state on the other hand so that the original system state
converges to the state of the servo system. This guarantees that in
the process of tracking the reference signal, the closed-loop system
is uniformly bounded. The well-posedness and tracking result are
proved in this section. Some simulation results are presented in
Section 4 to illustrate the effectiveness of the controller.

2. Observer design and servomechanism

In this section, we design an unknown input state observer
with (U(t), ym(t)) for system (1). A servo system is also designed
with the reference signal and the estimate of disturbance. First,
motivated from Feng & Guo, 2017 and Guo & Jin (2015), we design
an unknown input observer for system (1) which is not exactly
observable yet detectable as⎧⎪⎨⎪⎩

ût (x, t) = ûxx(x, t),
û(0, t) = ym(t),
ûx(1, t) = U(t),
û(x, 0) = û0(x),

(8)

where U(t) and u(0, t) are input and output of system (1). Let
ũ(x, t) = û(x, t) − u(x, t). Then ũ(x, t) satisfies⎧⎪⎨⎪⎩

ũt (x, t) = ũxx(x, t),
ũ(0, t) = 0,
ũx(1, t) = 0,
ũ(x, 0) = ũ0(x) = û0(x) − u0(x),

(9)

which is well-posed and exponentially stable in the state space H.
In fact, define the system operator Ã of (9) as{
Ãf = f ′′,∀f ∈ D(Ã),
D(Ã) = {f ∈ H2(0, 1)|f (0) = f ′(1) = 0}.

(10)
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