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a b s t r a c t

Most stochastic Model Predictive Control (MPC) formulations allow constraint violations via the use of
chance constraints, thus increasing control authority and improving performance when compared to
their robust MPC counterparts. However, common stochastic MPC methods handle chance constraints
conservatively: constraint violations are often smaller than allowed by design, thus limiting the potential
improvements in control performance. This is a consequence of enforcing chance constraints overlooking
the past behavior of the system and/or of an over tightening of the constraints on the predicted sequences.
This work presents a stochastic MPC strategy that uses the observed amount of constraint violations
to adaptively scale the tightening parameters, thus eliminating the aforementioned conservativeness.
It is proven using Stochastic Approximation that, under suitable conditions, the amount of constraint
violations converges in probability when using the proposed method. The effectiveness and benefits of
the approach are illustrated by a simulation example.

© 2018 Published by Elsevier Ltd.

1. Introduction

Stochastic Model Predictive Control (SMPC) is a type of MPC
which explicitly incorporates the stochasticity of the systems in
the prediction models and cost functions, and allows occasional
constraint violations via the use of chance constraints (Farina,
Giulioni, & Scattolini, 2016; Mesbah, 2016). These features help
to avoid the conservatism present in robust MPC methods due to
unlikely realizations of the uncertainty (Kouvaritakis & Cannon,
2016).

A common type of SMPC approach consists in a deterministic
reformulation of the stochastic programs by means of a constraint
tightening that accounts for the uncertainty of the predictions.
If the predicted nominal sequences (without uncertainty) satisfy
the reformulated deterministic constraints, then the full predic-
tions (affected by uncertainty) satisfy the chance constraints (Fa-
rina, Giulioni, Magni, & Scattolini, 2015; Kouvaritakis, Cannon, &

✩ This work was supported by the National Research Foundation, Prime Min-
ister’s Office, Singapore under the Energy Innovation Research Programme (EIR)
for Building Energy Efficiency Grant Call, administered by the Building and
Construction Authority (NRF2013EWT-EIRP004-051), and by CONICYT-FONDECYT
Postdoctorado-3170040. The material in this paper was not presented at any con-
ference. This paper was recommended for publication in revised form by Associate
Editor Franco Blanchini under the direction of Editor Ian R. Petersen.

* Corresponding author.
E-mail addresses: dimunoz@ing.uchile.cl (D. Muñoz-Carpintero),

gqhu@ntu.edu.sg (G. Hu), spanos@berkeley.edu (C.J. Spanos).

Muñoz-Carpintero, 2013; Kouvaritakis, Cannon, Raković, & Cheng,
2010; Paulson, Streif, & Mesbah, 2015; Schildbach, Calafiore, Fa-
giano, &Morari, 2012; VanHessem, Scherer, & Bosgra, 2001). Some
methods assume that the distribution of the uncertainty is known
and compute the tightening parameters by finding the inverse
of the cumulative distribution function (Kouvaritakis et al., 2013,
2010; Van Hessem et al., 2001), and others use Chebyshev type
inequalities to guarantee chance constraint satisfaction for any
distribution (Farina, Giulioni, Magni, & Scattolini, 2013; Farina et
al., 2015; Paulson et al., 2015). Scenario-based approaches impose
the constraints for different scenarios of the uncertainty, thus pro-
viding probabilistic guarantees for the satisfaction of the chance
constraints (Batina, 2004; Bernardini & Bemporad, 2009; Calafiore
& Fagiano, 2013; Schildbach et al., 2012).

These approaches, however, handle chance constraints con-
servatively. Chance constraints are enforced pointwise-in-time,
conditional to the current state and overlooking the past behav-
ior of the system. The consequence of this is that in closed-loop
constraints may be violated less than allowed by design (Korda,
Gondhalekar, Oldewurtel, & Jones, 2012; Schildbach, Fagiano, Frei,
& Morari, 2014), thus limiting the potential improvements in
control authority and performance. This is the case even with
recent scenario-based approaches that have reduced the conser-
vativeness of early methods by means of sampling-and-discard
strategies (Campi & Garatti, 2011; Prandini, Garatti, & Lygeros,
2012). Also, the scenario-based strategy of Schildbach et al. (2014),
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which reduces conservatism by abandoning the pointwise-in-time
enforcement of chance constraints in favor of a re-interpretation as
time-average constraints, ignores the past story of the system. Fur-
thermore, even the pointwise-in-time enforcement of constraints
may be itself conservative. For instance, constraint tightening us-
ing inequalities Chebyshev type inequalities is conservative for any
distribution except for the worst case (Farina et al., 2015; Paulson
et al., 2015).

Some approaches have been proposed to eliminate the conser-
vativeness in constraint satisfaction in SMPC by explicitly exploit-
ing the observed constraint violation level. A multi-layer setting
with guaranteed recursive feasibility is proposed in Korda, Gond-
halekar, Oldewurtel, and Jones (2014) and Korda et al. (2012). In
this approach, the state moves through the layers depending on
the observed amount of constraint violations, until this amount
converges to the desired value in the top layer. In Oldewurtel,
Sturzenegger, Esfahani, Andersson, Morari, and Lygeros (2013), an
adaptive scheme that uses the past constraint violations to adap-
tively scale the tightening parameters is proposed. However, the
conclusion for the convergence of the time-average of constraint
violations is argued intuitively, rather than with a rigorous proof.
Additionally, it is assumed that the control policy can decide at an
arbitrary instant, with probability 1, if a constraint is violated or
not. This assumption is too strong since there is no mechanism to
enforce this by the MPC optimization.

The work presented in this paper also considers an SMPC strat-
egy that exploits the observed constraint violations to adaptively
scale the tightening parameters to eliminate the aforementioned
conservativeness. The setting is similar to that of Oldewurtel et al.
(2013), with mild differences in the adaptive law that is necessary
for proving convergence. The main contribution of this work is a
rigorous analysis of the SMPC strategy with adaptive scaling to
eliminate the aforementioned conservativeness, but without the
strong assumption of Oldewurtel et al. (2013), and using instead
other assumptions that are commonly seen in practice. In this
analysis, the tools of Stochastic Approximation (SA) (Kushner &
Vázquez-Abad, 1996; Kushner & Yin, 2003) are used to prove
convergence of the amount of constraint violations and the scaling
of the tightening parameters to the desired level. The analysis also
includes a discussion on the conditions required to obtain the proof
of convergence.

We highlight that, unlike the method of Korda et al. (2014,
2012), our strategy does not use controllable sets (just like the
method of Oldewurtel et al., 2013). Instead, it can be built upon
many SMPC designs as it only requires the addition of a simple
update law. Thus it is well suited to large systems, and is easy to
implement, making it attractive for industrial adoption.

The structure of the paper is as follows. Section 2 introduces
basic notations, definitions, and relevant tools of stochastic pro-
cesses and SA. Section 3 defines the problem setting, a usual formu-
lation of SMPC and discusses a motivation for this work. Section 4
presents the proposed SMPC strategywith adaptive tightening and
Section 5 analyzes its convergence properties, and discusses possi-
ble extensions, the relevance of the main conditions and compares
the strategy considered herewith othermethods. Finally, Section 6
presents numerical examples and Section 7 provides concluding
remarks.

2. Mathematical preliminaries

2.1. Basic definitions and notation

The sets of non-negative, positive integers and non-negative
reals are denotedbyN,N+ andR+. For a sequencex = {xk : k ∈ N},
xj|k denotes the prediction of xk+j made at time k. The Minkowski
sum of sets X, Y ⊆ Rn is given by X ⊕ Y = {x + y : x ∈ X, y ∈ Y }.

Given a closed and convex set X, the normal cone of X at x is
CX(x) = {z : zT (y − x) ≤ 0, ∀y ∈ X}. (Note that if x is in the
interior of X then trivially CX(x) = {0}, and CX(x) = ∅ if x ̸∈ X.)

A probability space is defined by the triple (Ω,F,P), whereΩ
is the sample space, F is a σ -algebra of Ω and P is a probability
measure on (Ω,F). The expected value of the random variable x
is denoted by E{x}. Given a probability space (Ω,F,P) and a set
X, an X-valued discrete time stochastic process is a sequence of
random variables x = {xk ∈ X : k ∈ T} on Ω , where T is a
countable time-set. Let {Fk : k ∈ T} be a filtration, i.e. a sequence
of sub-σ -algebras of F such that Fk ⊆ Fk+1 for all k ∈ T. The
expectation of a random variable y conditioned on the variables
that areFk-measurable is denoted byEk{y} (this can be interpreted
as the expectation conditioned on the values of the variables at
time k).

Definition 1 (Convergence in Probability). The sequence of random
variables x = {xk ∈ X : k ∈ T} is said to converge in probability
to a random variable x if limk→∞P{|xk − x| ≥ ϵ} = 0 for all ϵ > 0,
and is denoted by xk

p
−→ x.

Definition 2 (Martingales). A sequence of random variables x =

{xk ∈ X : k ∈ T}, where xk is Fk-measurable for the filtration
{Fk : k ∈ T}, is a martingale if Ek{xk+1} = xk with probability
1 for all k. The sequence of random variables d = {dk : k ∈ T},
where dk = xk+1−xk, is called amartingale difference and satisfies
Ek{dk} = 0 with probability 1.

2.2. Stochastic approximation

Stochastic Approximation (SA) (Kushner & Yin, 2003) is a root-
finding or optimization method for unknown functions g(θ ) from
which one only has access to noisy measurements. The idea is to
recursively adapt the parameter θk using the noisy measurements
yk of g(θk), so that θk converges to θ∗, which is the root or the
optimal argument of g(θ ). SA can take different forms depending
on the type of problem it deals with (optimization or root-finding),
the nature of the noise affecting the system (correlated, non-
correlated, driven by a Markov process, among others) or the type
of convergence that can be obtained (weak convergence or with
probability 1). The basics of the variant of SA that is relevant for
our work are described next.

A root-finding problem is considered in this work, where the
goal is to find a parameter θ∗ that satisfies g(θ∗) = 0. Here,
yk are the noisy measurements of g(θk), such that g(θ ) is the
limit of the time average of the expected values of yk, for a fixed
θk := θ , when k → ∞. Also, a Markovian type of uncertainty
is considered. Associated with the noisy measurements there is a
dynamic process with state ξk, which is also known as a memory
process (Kushner & Yin, 2003), that evolves in a Markovian way
(i.e., the probability of ξk+1 is a function of the value of ξk, thus
Markovian, and θk). This memory process defines the noise of the
measurements yk, such that they satisfy Ek{yk} = g̃(θk, ξk), for
some function g̃(·, ·) (Kushner &Vázquez-Abad, 1996). Thus, g̃(·, ·),
and θk, ξk can be understood as the function and the internal states
that define the expected value of yk. This setting will be formalized
in Theorem 3 (conditions (i), (iv) and (v)).

For finding θ∗ in the bounded set Θ = {θ : θ ≤ θ ≤ θ̄}, with
θ∗

∈ Θ , consider the algorithm

θk+1 = ΠΘ [θk + ϵkyk] (1)

where ΠΘ [·] denotes the projection to Θ and {ϵk : k ∈ T} is
the step-size sequence. The conditions for the convergence of θk
to θ∗ with (1) are studied in Kushner and Vázquez-Abad (1996)
and Kushner and Yin (2003), where a weak convergence result
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