
Automatica 95 (2018) 187–196

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Tensor network subspace identification of polynomial state space
models✩

Kim Batselier *, Ching-Yun Ko, Ngai Wong
The Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong

a r t i c l e i n f o

Article history:
Received 25 September 2017
Received in revised form 22 February 2018
Accepted 15 April 2018

Keywords:
Subspace methods
Tensors
MIMO
Identification methods
System identification
Linear/nonlinear models

a b s t r a c t

This article introduces a tensor network subspace algorithm for the identification of specific polynomial
state space models. The polynomial nonlinearity in the state space model is completely written in terms
of a tensor network, thus avoiding the curse of dimensionality. We also prove how the block Hankel
data matrices in the subspace method can be exactly represented by low rank tensor networks, reducing
the computational and storage complexity significantly. The performance and accuracy of our subspace
identification algorithm are illustrated by experiments, showing that our tensor network implementation
identifies a seventh degree polynomial state spacemodel around 20 times faster than the standardmatrix
implementation before the latter fails due to insufficient memory. The proposed algorithm is also robust
with respect to noise and therefore applicable to practical systems.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Linear time-invariant (LTI) systems (Kailath, 1980) are a very
useful framework for describing dynamical systems and have con-
sequently been applied in myriad domains. Parametric system
identification deals with the estimation of parameters for a given
model structure from a set of measured vector input–output pairs
(u0, y0), . . . , (uL−1, yL−1) and has been thoroughly studied in the
1980s and 1990s. Two important model structures for LTI systems
are transfer function models and state space models, which can
be converted into one another. The dominant framework for the
estimation of transfer function models is prediction error and
instrumental variablesmethods (Ljung, 1999; Söderström&Stoica,
1988), while state space models are typically estimated through
subspace methods (Katayama, 2005; van Overschee & De Moor,
2012). Prediction error methods are iterative methods that es-
timate the transfer function parameters such that the resulting
prediction errors are minimized. These iterative methods suffer
from some disadvantages such as no guaranteed convergence,
sensitivity of the result on initial estimates and getting stuck in
a local minimum of the objective function. Subspace methods, on

✩ This work was supported in part by the Hong Kong Research Grants Council
under General Research Fund (GRF) Project 17246416. The material in this paper
was not presented at any conference. This paper was recommended for publication
in revised form by Associate Editor Antonio Vicino under the direction of Editor
Torsten Söderström.

* Corresponding author.
E-mail addresses: kimb@eee.hku.hk (K. Batselier), cyko@eee.hku.hk (C.-Y. Ko),

nwong@eee.hku.hk (N. Wong).

the other hand, are non-iterative methods that rely on numerical
linear algebra operations such as the singular value decomposition
(SVD) orQRdecomposition (Golub&Loan, 1996) of particular block
Hankel data matrices. Estimates found through subspace methods
are often good initial guesses for the iterative prediction error
methods.

The most general nonlinear extension of the discrete-time lin-
ear state space model is

xt+1 = f (xt , ut ),
yt = g(xt , ut ),

where xt , ut , yt are the state, input and output vectors at time t , re-
spectively and f (·), g(·) are nonlinear vector functions. By choosing
different nonlinear functions f (·), g(·) one effectively ends up with
very different nonlinear state space models. A popular choice for
the nonlinear functions ismultivariate polynomials. Themost gen-
eral polynomial state spacemodel, where f (·), g(·) aremultivariate
polynomials in both the state and the input, is described in Paduart
et al. (2010). Being themost general form implies that it has a large
expressive power, enabling the description ofmany different kinds
of dynamics. This, however, comes at the cost of having to estimate
an exponentially growing number of parameters as the degree of
the polynomials increases. Furthermore, the identificationmethod
relies on solving a highly nonlinear optimization problem using
iterative methods.

In Kruppa, Pangalos, and Lichtenberg (2014), multilinear time
invariant (MTI) systems are proposed. MTI systems are systems for
which f (·), g(·) are multivariate polynomial functions where each
state or input variable is limited to a maximal degree of one. The

https://doi.org/10.1016/j.automatica.2018.05.015
0005-1098/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2018.05.015
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2018.05.015&domain=pdf
mailto:kimb@eee.hku.hk
mailto:cyko@eee.hku.hk
mailto:nwong@eee.hku.hk
https://doi.org/10.1016/j.automatica.2018.05.015


188 K. Batselier et al. / Automatica 95 (2018) 187–196

number of parameters of an m-input–p-output MTI system with n
states is then (n+p)2(n+m), growing exponentiallywith the number
of state and input variables. This curse of dimensionality is then
effectively lifted with tensor methods. In this article, we propose
the following polynomial state space model

xt+1 = A xt + f (ut ),
yt = C xt + g(ut ), (1)

where both f (·), g(·) are multivariate polynomials of total degree
d. We then show that it is possible to identify these models using
conventional subspace methods. The number of parameters that
need to be estimated, however, will also grow exponentially with
d.We thenpropose to use tensor networks to represent the polyno-
mials f (·), g(·) and modify the conventional MOESP (Multivariable
Output Error State Space) subspace method to work for tensor
networks. The main contributions of this article are:

(1) We extend LTI state space models to a specific class of
polynomial state space models with a linear state sequence
and a polynomial input relation.

(2) We modify the MOESP method (Verhaegen & Dewilde,
1992a,b) to utilize tensor networks for the identification of
the proposed polynomial state space model.

(3) We prove in Theorem 4.1 that the block Hankel data ma-
trices in subspace methods are exactly represented by low-
rank tensor networks, thereby reducing the computational
and storage complexity significantly.

Themain outline of this article is as follows. First, we briefly discuss
some tensor network preliminaries in Section 2. The proposed
polynomial state space model is discussed in detail in Section 3.
The development and implementation of our proposed tensor
network subspace identification method is described in Section 4.
The algorithm to simulate our proposed polynomial state space
model in tensor network form is given in Section 5. Numerical
experiments validate and demonstrate the efficacy of our ten-
sor network subspace identification method in Section 6. All our
algorithms were implemented in the MATLAB/Octave TNMOESP
package and can be freely downloaded from https://github.com/
kbatseli/TNMOESP. Finally, some conclusions and future work are
formulated in Section 7.

2. Preliminaries

Most of the notation on subspace methods is adopted from
Katayama (2005) and the notation on tensors from Batselier, Chen,
and Wong (2017a, b) is also used. Tensors are multi-dimensional
arrays that generalize the notions of vectors andmatrices to higher
orders. A d-way or dth-order tensor is denoted A ∈ Rn1×n2×···×nd

and hence each entry of A is determined by d indices i1, . . . , id.
We use the MATLAB convention that indices start from 1, such
that 1 ≤ ik ≤ nk (k = 1, . . . , d). The numbers n1, n2, . . . , nd are
called the dimensions of the tensor. For practical purposes, only
real tensors are considered. We use boldface capital calligraphic
lettersA,B, . . . to denote tensors, boldface capital letters A,B, . . .

to denote matrices, boldface letters a, b, . . . to denote vectors, and
Roman letters a, b, . . . to denote scalars. The elements of a set
of d tensors, in particular in the context of tensor networks, are
denotedA(1),A(2), . . . ,A(d). The transpose of a matrix A or vector
a are denoted AT and aT , respectively. The unit matrix of order n is
denoted In. A matrix with all zero entries is denoted O.

A very useful graphical representation of scalars, vectors, ma-
trices and tensors is shown in Fig. 1. The number of unconnected
edges of each node represents the order of the corresponding ten-
sor. Scalars therefore are represented by nodes without any edges,
while a matrix is represented by a node that has two edges. This

Fig. 1. Graphical depiction of a scalar a, vector a, matrix A and 3-way tensor A.

graphical representation allows us to visualize the different tensor
networks and operations in this article in a very straightforward
way. We also adopt the MATLAB notation regarding entries of
tensors, e.g. A(:, 1) denotes the first column of the matrix A. We
now give a brief description of some required tensor operations.
The generalization of the matrix–matrix multiplication to tensors
involves amultiplication of amatrix with a d-way tensor along one
of its d possible modes.

Definition 2.1 (Kolda&Bader, 2009, p. 460). The k-modeproduct of
a tensor A ∈ Rn1×···×nk×···×nd with a matrix U ∈ Rpk×nk is denoted
B = A×k U and defined by

B(i1, . . . , ik−1, j, ik+1, . . . , id) =
nk∑

ik=1

U (j, ik)A(i1, . . . , ik−1, ik,ik+1, . . . , id), (2)

with B ∈ Rn1×···×nk−1×pk×nk+1×···×nd .

For a (d+1)-way tensorA ∈ Rn×m×···×m and vector x ∈ Rm, we
define the short hand notation for the vector

A xd := A×2xT×3 · · · ×d+1xT ∈ Rn.

The Kronecker product will be repeatedly used to describe the
polynomial nonlinearity.

Definition 2.2 (Kronecker Product). If B ∈ Rm1×m2 and C ∈ Rn1×n2 ,
then their Kronecker product B⊗ C is them1n1 ×m2n2 matrix⎛⎜⎝ b11 · · · b1m2

...
. . .

...

bm11 · · · bm1m2

⎞⎟⎠⊗ C =

⎛⎜⎝ b11C · · · b1m2C
...

. . .
...

bm11C · · · bm1m2C

⎞⎟⎠ . (3)

Definition 2.3. The Khatri–Rao product A⊙ B between A ∈ Rn1×p

and B ∈ Rn2×p is the matrix C ∈ Rn1n2×p with

C (:, k) = A(:, k)⊗ B(:, k), (k = 1, . . . , p).

Two common operations on tensors that we will use throughout
this article are reshaping and a permutation of the indices.

Definition 2.4. We adopt the MATLAB/Octave reshape operator
‘‘reshape(A, [n1, n2, n3 · · · ])’’, which reshapes the d-way tensorA
with column-wise ordering preserved into a tensor with dimen-
sions n1 × n2 × · · · × nd. The total number of elements of A must
be the same as n1 × n2 × · · · × nd.

Definition 2.5. We adopt theMATLAB/Octave permutation opera-
tor ‘‘permute(A, p)’’, which rearranges the dimensions ofA so that
they are in the order specified by the vector p. The resulting tensor
has the same values of A but the order of the subscripts needed
to access any particular element is rearranged as specified by p. All
the elements of pmust be unique, real, positive, integer values.

Storing all entries of a d-way tensor with dimension size n
requires nd storage units and quickly becomes prohibitively large
for increasing values of n and d. When the data in the tensor have
redundancies, thenmore economicways of storing the tensor exist
in the form of tensor decompositions. The tensor decomposition

https://github.com/kbatseli/TNMOESP
https://github.com/kbatseli/TNMOESP
https://github.com/kbatseli/TNMOESP


Download English Version:

https://daneshyari.com/en/article/7108203

Download Persian Version:

https://daneshyari.com/article/7108203

Daneshyari.com

https://daneshyari.com/en/article/7108203
https://daneshyari.com/article/7108203
https://daneshyari.com

