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We design and analyze the scalar gradient extremum seeking control feedback for static maps with
actuation dynamics governed by diffusion PDEs. Conceptually, a non-model based online optimization
control scheme is paired with actuation dynamics which occur in chemistry, biology and economics. A
learning-based adaptive control approach with known actuation dynamics is considered in this paper. In

the design part, we first compensate the actuation dynamics in the dither signals. Secondly, we introduce
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an average-based actuation dynamics compensation controller via a backstepping transformation, which
is fed by the perturbation-based gradient and Hessian estimates of the static map. The stability analysis of
the error-dynamics is based on using Lyapunov’s method and applying averaging for infinite-dimensional
systems to capture the infinite-dimensional state of the actuator model. Local exponential convergence
to a small neighborhood of the optimal point is proven and illustrated by numerical simulations.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Background and state-of-the-art

Extremum seeking control (ESC) is a non-model based, real-
time optimization approach in the field of adaptive control. It is
used to determine and maintain the extremum of an unknown,
perhaps nonlinear, output map of a (stable) dynamic or static
system. The goal is to find the optimal input ®* of an unknown
plant that drives the measurable system output y to its unknown
optimal value y*, using the perturbation method.

The idea of ESC was first published in the paper of Leblanc
(1922) for maximizing power transfer to a tram car. The Russians
(Kazakevich, 1943) intensively studied this concept in the 1940s,
before it was introduced in the 1950s in the US by Draper and Li
(1951). The first general stability proof of ESC for stable dynamic
systems with unknown output maps was performed by Krsti¢ and
Wang (2000). Since then, ESC has seen renewed interest and addi-
tional theoretical work, e.g., by Ariyur and Krsti¢ (2003), stochastic
ESC by Manzie and Krsti¢ (2009), Newton-based ESC by Ghaffari,
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Krsti¢, and Nesi¢ (2012) or ESC for stabilization by Scheinker and
Krsti¢ (2016) can be found in literature. Moreover, ESC was suc-
cessfully applied in diverse engineering systems, such as mobile
robots, bioprocesses, combustion engines, brake system control
and more, which is summarized together with the history of ESC
by Tan, Moase, Manzie, Nesi¢, and Mareels (2010) and references
therein.

On the other hand, actuation dynamics described by infinite-
dimensional systems has been introduced in several applications.
The representative example is a system under actuator delays,
in which the delay propagation can be described by a first or-
der hyperbolic partial differential equation (PDE). Compensation
of the actuator and sensor delay has been developed in Krstic
and Smyshlyaev (2008a) for linear systems and in Krsti¢ (2010)
for nonlinear systems via the infinite-dimensional backstepping
method (Krsti¢ & Smyshlyaev, 2008b). Recently, the first contri-
bution of applying ESC to infinite-dimensional actuation dynamics
was achieved by Oliveira, Krstic, and Tsubakino (2017) in the case
of actuator delays with known delay time. A stability proof of
the error-dynamics and the convergence to the extremum was
presented.

Another well known infinite-dimensional system is a diffusion
process which arises in several biological, chemical and economical
systems (see Edelstein-Keshet (1988), Wang, Wang, Xu, Wu, and
Jia (2013)). Compensation of actuator dynamics governed by a
diffusion PDE was studied in Krsti¢ (2009) for the stabilization of
a linear system. However, there is no work in the literature which
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concerns ESC in the presence of actuation dynamics governed by
diffusion PDEs, or more general parabolic PDEs.

Although our main focus is to consider more general dynamical
systems rather than those governed by ordinary differential equa-
tions, where extremum seeking methodology can be extended to
a class of diffusion PDEs, our problem setting is close to be applied
to practical scenarios since it satisfies the basic conditions raised in
chemical engineering literature. Motivated by examples like opti-
mizing the product rate of a tubular bioreactor (Cougnon, Dochain,
Guay, & Perrier, 2006; Hudon, Guay, Perrier, & Dochain, 2008;
Winkin, Dochain, & Ligarius, 2000), where the model is described
by coupled (in-domain) linear parabolic PDEs, we can consider
problems with the dynamical model of the bioreactor as infinite-
dimensional actuator dynamics, which generates an exponentially
stable %p-semigroup, as shown in Winkin et al. (2000). Finding
and maintaining the optimal unknown product rate, described by a
static map, is a more advanced setting of the problem we consider
in this paper. Therefore, we first study the pure diffusion actuation
dynamics paired with ESC, before we extend the results to more
complex applications.

We tackle this problem with a semi-model-based or so-called
“partially model based” approach, since the diffusion coefficient is
known, but the plant model (map) is unknown and its parameters
are estimated using perturbations, as done in Oliveira et al. (2017).
As previously mentioned by learning-based controllers in Benos-
man (2016) and Benosman, Lewis, and Guay (2018), such kind of
controllers are partly based on a physics-based model, and partly
based on a model-free learning algorithm. In this paradigm, model
free learning is used to complement the physics-based model and
compensate for the uncertain or the missing part of the model.

1.2. Contributions and organization of the paper

In this paper, we design ESC for static maps with actuation
dynamics governed by diffusion PDEs. The controller to compen-
sate the known actuation dynamics is designed via an infinite-
dimensional backstepping transformation and is fed with the
gradient and Hessian estimate of the static map. The main contri-
bution of this paper is on stability analysis. Firstly, the transformed
target system associated with the low-pass filtered boundary value
for ESC is shown to be exponentially stable. Secondly, invoking
the averaging theorem for infinite-dimensional systems was suc-
cessfully applied to the parabolic PDE of the average system via
semigroup analysis, while in Oliveira et al. (2017) the system was
described as a functional differential equation. Finally, conver-
gence to the neighborhood of the extremum is proven.

In the next section, we introduce the problem statement with
setting up the mathematical formulations. Section 3 provides the
design of the diffusion compensation controller and the derivation
of the error-dynamics. Section 4 presents the proof of our main the-
orem on stability and convergence of the error-dynamics for ESC
with actuation dynamics governed by diffusion PDEs. Numerical
simulations are performed in Section 5, which validate the stability
and convergence property of the closed-loop system. In Section 6
we give a conclusion of the paper.

1.3. Notation

¢" (%) denotes a n-times continuously differentiable function
on the domain 2. R, stands for the domain of positive real num-
bers including 0. We denote the partial derivatives of a function
u(x, t) as dyu(x, t) = du(x, t)/ax, du(x,t) = du(x,t)/dt. The 2-
norm of a finite-dimensional (ODE) state vector ¢ : R, — R is
denoted by single bars, |#(t)|. In contrast, norms of functions (of x)
are denoted by double bars. We denote the spatial %[0, D] norm

of the PDE state u(x, t) as ||”(t)||fsfz([0,n]) = fOD u?(x, t)dx, where we
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Fig. 1. Basic gradient extremum seeking scheme.

drop the index .#5([0, D]) in the following, hence [|-|| = ||| #,0,01)
if not otherwise specified. As defined in Khalil (1996), a vector
function f(t,e) € R is said to be of order ¢(¢) over an interval
[tq1, t2],if 3k, & : |f(t, )| < ke, Ve € [0, ] and Vt € [t1, t3]. In most
cases we give no estimation of the constants k and &, then ¢(e)
can be interpreted as an order of magnitude relation for sufficiently
small &.

2. Problem statement
2.1. Basic gradient extremum seeking

As introduced, ESC for static maps is a real-time optimization
control scheme, where the goal is to find and maintain the opti-
mum of an unknown nonlinear staticmap Q : R — R with optimal
unknown output y* € R, unknown optimizer ®* € R, measurable
output y € R and input ® € R (see Fig. 1). Without loss of
generality, we consider maximization problems (for minimization
use y = —y). The method of sinusoidal perturbation (Khalil, 1996)
forms the basics of extremum seeking (Ariyur & Krsti¢, 2003; Krsti¢
& Wang, 2000), such that the input parameter @ of the static map
is varying to estimate the gradient G of the static map. Therefore,
the perturbation signal

S(t) = asin(wt), (M

with perturbation amplitude a and frequency o, is added to the
estimation of the optimizer @*, given by ®. The dither signal to
estimate the gradient of the static map is chosen as

M(t) = %sin(wt). (2)

The idea of choosing the dither signals as (1) and (2) is derived such
that the averaged signal of the gradient estimate G is given, under
the assumption of a quadratic map Q(-), by Gu(t) = HO®, =
H((Q)av — ©%), where H is the unknown negative Hessian of the
static map and ® = @ — O the estimation error. This yields
the averaged error-dynamics @,, = KH®,,, with adaption gain
K > 0. Since Q(-) can be nonlinear, but approximated as quadratic
map in a neighborhood of the optimum (®*, y*), the system in
Fig. 1is locally exponentially stable and by the averaging theorem
in Khalil (1996), the local exponential stability of the original error-

dynamics ® = KH® follows.
2.2. Actuation dynamics and output

In addition to the basic ESC scheme in Fig. 1, we consider
actuation dynamics which are described by a diffusion process,
i.e., a heat equation with the actuator (t) € R and the propagated
actuator O(t) € R given by

O(t) = «(0,t) (3)
ora(x, t) = Ona(x,t), x€(0,D) (4)
9xx(0,t)=0 (5)
a(D, t) = 6(t), (6)
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