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a b s t r a c t

A robust hierarchical model predictive control framework is presented for controlling a linear system of
dynamically coupled subsystems. A graph-based modeling framework captures the conservation laws of
power flow systems, for which control optimizes the storage and routing of energy tomaximize transient
and steady-state power throughput. A constructive approach is presented for developing an N-level
hierarchical controller, which guarantees satisfaction of state and input constraints in the presence of
signal and model uncertainty.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Graph-based modeling approaches have been used in a wide
variety of applications areas such as chemical processing plants
(Jogwar, Rangarajan, & Daoutidis, 2015; Preisig, 2009), building
thermal systems (Mukherjee, Mishra, & Wen, 2012), electronic
circuits (Behjati, Davoudi, & Lewis, 2014), and flow control systems
(Blanchini, Franco, Giordano, Mardanlou, & Montessoro, 2016).
These systems function based on the storage, conversion, and
routing of conserved quantities such as mass and energy and thus
can be modeled as a graph; where vertices and edges represent
the storage and transport, respectively. These systems typically
have hard constraints bounding the actuators and states alongwith
dynamics that evolve over a wide range of timescales.

A decentralized model predictive control (MPC) approach that
guarantees closed-loop stability for graph-based power flow sys-
tems has been presented in Koeln and Alleyne (2017). Using the
inherent passivity of these systems, a single passivity constraint is
added to each of the decentralized controllers, making guaranteed
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stability a local and easily implementable modification to existing
MPC frameworks. While stability is achieved, robust feasibility of
state constraints is not guaranteed.

While considering the same general class of systems, the goal
of this paper is to achieve robust feasibility of actuator and state
constraints of discrete-time linear power flow systems under hi-
erarchical MPC to optimize the storage and routing of conserved
quantities across multiple timescales. These conserved quantities
are referred to as the storage of energy and the routing of power
without loss of generality. By achieving robust feasibility, the con-
strained optimization problem for each controller in the hierarchy
remains feasible in the presence of model uncertainty and dis-
turbance signal uncertainty. Additionally, by satisfying state and
input constraints, bounded-input, bounded-output (BIBO) stability
is guaranteed.

Building on a number of robust centralized (Langson, Chrys-
sochoos, Raković, & Mayne, 2004; Limon, Alvarado, Alamo, &
Camacho, 2008, 2010; Mayne, Seron, & Raković, 2005) and dis-
tributed (Farina & Scattolini, 2012; Riverso & Ferrari-Trecate, 2012;
Trodden, 2014; Trodden & Richards, 2010) MPC formulations, sev-
eral robust hierarchical MPC formulations have been developed.
In Scattolini and Colaneri (2007), a two-level hierarchical control
approach is presentedwith a slowhigher-level and fast lower-level
controller. The lower-level controller bounds deviations between
the control decisions made at each level and the higher-level con-
troller is made robust to these deviations using a min–max robust
MPC formulation. This approach is extended in Scattolini, Colaneri,
and Vito (2008) by allowing the lower-level of control to consist of
m controllers for systems with decoupled actuator dynamics. The
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goal of the upper-level controller is to determine which actuators
to enable along with their desired control inputs, while the lower-
level controllers determine the actual control inputs that account
for the dynamics of the actuators at a faster timescale. This work is
further formalized in Picasso, Vito, Scattolini, and Colaneri (2010).
Additional approaches are presented in Barcelli, Bemporad, and Ri-
paccioli (2010, 2011) and Vermillion, Menezes, and Kolmanovsky
(2014)where two-level hierarchical controllers are developed that
act similar to reference governors, using dynamic actuators to
satisfy system constraints with guaranteed stability.

In each of these efforts, a two-level hierarchical framework is
developed to handle the timescale separation between the sys-
tem and actuator dynamics. However, in practice, many systems
have more than two timescales and an N-level hierarchical con-
troller would be more effective. While Picasso, Romani, and Scat-
tolini (2009) present a more generic mathematical formulation for
N-level hierarchical MPC, theoretical properties like robust stabil-
ity and feasibility are not established and the authors state that
‘‘much work is still needed’’.

Themain features of the proposed approach are: (1) the control
hierarchy has N levels to match the N timescales of the system,
(2) the system is decomposed into multiple subsystems to re-
duce computational cost of low level controllers, (3) the formu-
lation guarantees state and actuator constraint satisfaction in the
presence of both model and disturbance signal uncertainty, and
(4) model reduction is employed to reduce computational costs of
high level controllers. With these benefits, the proposed approach
relies on several assumptions about the system and control for-
mulation that are discussed throughout the paper. Relaxing these
assumptions is the focus of ongoing work.

The remainder of the paper is organized as follows. Section 2
presents the class of graph-based power flow systems and Sec-
tion 3 provides an overview of the hierarchical control structure.
The MPC formulation for each controller in the hierarchy is pre-
sented in Section 4. Section 5 presents the main result of the paper
establishing the recursive feasibility of all controllers in the hierar-
chy. A numerical example is presented in Section 6, demonstrating
the hierarchical control formulation. Finally, concluding remarks
are provided in Section 7.

Notation

For sets X ,Y ⊂ Rn, the Minkowski sum is X ⊕ Y ≜ {x + y |

x ∈ X , y ∈ Y} and for sets Y ⊂ X , the Pontryagin difference is
X ⊖ Y ≜ {x ∈ Rn

| Y + x ⊂ X }. For a set X ⊂ Rn and the linear
mapping A : Rn

→ Rm, AX ≜ {Ax | x ∈ X }. A set X ⊂ Rn is robust
positively invariant (RPI) for a system x(k+1) = f (x(k), w(k)) if and
only if for all x ∈ X and all w ∈ W it holds that f (x(k), w(k)) ∈ X .
The right inverse of A ∈ Rn×m is defined as A†

= AT (AAT )−1.
The value of a variable x at time k is denoted x(k) or simply x for
notational simplicity. The value at k + 1 is denoted x+. The double
notation x(i|j) denotes the predicted value of x at future time i
determined at time j.

2. Class of systems

Consider the power flow system S represented by an oriented
graph G = (V , E) of order Nv with the set of vertices V = {vi}, i ∈

[1,Nv
] and of size Ne with set of edges E = {ej}, j ∈ [1,Ne

]. Each
oriented edge ej ∈ E represents power flow in S, where positive
power Pj flows from the tail vertex vtail

j to the head vertex vhead
j .

Each vertex vi ∈ V has an associated state xi that represents the
energy stored in that vertex. Thus, the dynamic for the state of each
vertex vi satisfies the discrete-time energy conservation equation

Ci
x+

i − xi
∆t

=

∑
ej∈Eini

Pj −
∑

ej∈Eouti

Pj, (1)

Fig. 1. Notional system exemplifying the graph-based power flow representation
with key disturbances and power flows highlighted in red. Dashed lines indicate
elements that serve as disturbances to the system. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

where ∆t is the time step and Ci > 0 is the energy storage
capacitance of vertex vi while E in

i = {ej|vhead
j = vi} and Eout

i =

{ej|vtail
j = vi} are the sets of edges oriented into and out of vertex

vi.

Assumption 1. The power flow Pj along edge ej is defined as

Pj = ajxtailj − bjxheadj + cjuj + ∆Pj, (2)

where xtailj and xheadj are the states of the tail and head vertices
vtail
j and vhead

j , uj is an associated actuator input, the coefficients
(aj, bj) ≥ 0 and cj ̸= 0 define the relationship between the
power flow, the states, and the actuator input, and the disturbance
|∆Pj| ≤ ∆Pmax

j is an unknown but bounded additive power flow.

Remark 1. In (2), ∆Pj is treated as an unknown, yet bounded,
disturbance. This disturbance represents both model uncertainty
and bounded linearization error when using (2) to approximate
nonlinear power flow relationships.

In general, the system S has states x ∈ RNv
that each satisfy (1)

and power flows P ∈ RNe
that each satisfy (2). The disturbances

to S capture how power enters and exits the system, with inlet
power flows P in

∈ RNs
and sink states xt ∈ RNt

. As indicated by
dashed lines in Fig. 1, the inlet power flow edges are not included
in G. Also indicated by dashed lines in Fig. 1, the sink states are not
states of S, but the sink vertices and the edges connecting S to the
sink vertices are included in G. Power flows along this type of edge,
denoted Pout

∈ RNt
, each follow the relationship from (2).

Let M = [mi,j] ∈ R(Nv
+Nt )×Ne

be the incidence matrix of graph
G (West, 2001) where

mi,j =

{
+1 if vi is the tail of ej
−1 if vi is the head of ej
0 else

}
. (3)

Then, based on (1), the system dynamics are[
C(x+

− x)
(xt )+ − xt

]
= −∆tMP + ∆t

[
D
0

]
P in, (4)

where C = diag([Ci]) is a diagonal matrix of the vertex capaci-
tances and D = [di,j] ∈ RNv

×Ns
where

di,j =

{
1 if vi is the head of P in

j
0 else

}
. (5)

Since xt are disturbances to the system, not states,M is partitioned
as M =

[
M̄
M

]
, with M̄ ∈ RNv

×Ne
andM ∈ RNt

×Ne
, resulting in

C(x+
− x) = −∆tM̄P + ∆tDP in. (6)
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