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a b s t r a c t

In this paper, we develop two zonotope-based set-membership estimation algorithms for identification of
time-varying parameters in linear static models, where both additive andmultiplicative uncertainties are
treated explicitly. The two recursive algorithms can be differentiated by their ways of processing the data
and required computations. The first algorithm, which is referred to as Cone And Zonotope Intersection
(CAZI), requires solving linear programming problems at each iteration. The second algorithm, referred
to as the Polyhedron And Zonotope Intersection (PAZI), involves linear programming as well as an
optimization subject to linear matrix inequalities (LMIs). Both algorithms are capable of providing tight
overbounds of the feasible solution set (FSS) in an application to health monitoring of marine engines.
Furthermore, PAZI algorithm applied to mini-batches of measurement data leads itself to further analysis
of the relation between the estimation results at different iterations. In addition, an example of identifying
time-varying parameters is also reported.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Set-membership estimation has been studied by many re-
searchers since 1960s (Schweppe, 1968). This approach is of-
ten referred to as a guaranteed estimation approach and it
generates typically an overbound of the feasible solution set (FSS),
which consists of all possible parameters that are consistent with
measurements, models, assumptions on noise, and uncertainty
bounds. Unlike statistical estimation techniques, no assumptions
are made in set-membership estimation about probability distri-
bution of process noise and measurement noise. Recent develop-
ments in set-membership estimation include recursive algorithm
development and comparison (Casini, Garulli, & Vicino, 2017a,
2017b), new insights revealing the connections with statistical
estimation (Fernández-Cantí, Blesa, Puig, & Tornil-Sin, 2016; Wei,
Liu, Song, & Liu, 2015), new techniques for handling nonlinear-
ities (Fernández-Cantí, Tornil-Sin, Blesa, & Puig, 2015), applica-
tions to model reference control (Guo, Zhang, & Jiang, 2016;
Rotondo, Nejjari, Puig, & Blesa, 2015) and robust MPC (Ping & Sun,
2015), and other novel applications (e.g. simultaneous localization
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and mapping (SLAM) Yu, Zamora, & Soria, 2016 and diabetes
treatment Herrero et al., 2016). Set-membership techniques for
simultaneous input and parameter estimation are developed
in Kolmanovsky, Sivergina, and Sun (2006).

A major topic considered in set-membership estimation is the
parameter identification in linear systems. As shown in Milanese
and Vicino (1996), the FSS of unknown constant parameters can be
computed exactly if a linear system with an additive uncertainty
is considered. But solving this problem numerically is computa-
tionally very involved, thus the approximated feasible solution set
(AFSS) is often sought as the over-approximation of the FSS (i.e. FSS
⊆ AFSS). Commonly-used geometric elements for recursively per-
forming such approximations are boxes (Casini et al., 2017a),
ellipsoids (Kurzhanski & Valyi, 1997), and zonotopes (Bravo,
Alamo, & Camacho, 2006; Le, Stoica, Alamo, Camacho, & Dumur,
2013). Recently, zonotopes have become popular (Le et al., 2013)
as the procedures exploiting zonotopes have high computational
efficiency and can provide tight overbounds of the FSS. In par-
ticular, in Bravo et al. (2006), a zonotope-based algorithm is
developed for handling the problem of estimating time-varying
parameters. This problem is revisited in this paper for the casewith
both additive and multiplicative uncertainties while in previous
literature (Bravo et al., 2006; Casini et al., 2017a, 2017b; Le et al.,
2013; Milanese & Vicino, 1996) only additive uncertainties were
treated. The system studied throughout this paper is described as
follows.
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Consider a linear parametricmodel in the form treated in Bravo
et al. (2006), Casini et al. (2017a), Le et al. (2013) and Milanese and
Vicino (1996), and generalized to aMultiple-Measurement setting,

yk = φ⊤

k θk + uk, (1)

where yk ∈ Rm is the measured system output, θk ∈ Rn represents
the true parameter vector to be estimated, φk ∈ Rn×m is the
regressor and uk ∈ Rm represents the additive noise.When uk in (1)
is unknown but has known bounds, we refer to the uncertainty as-
sociatedwith uk as ‘‘additive’’ because of theway it enters the para-
metric model in (1). There are well-established set-membership
estimation algorithms for this case. However, in many cases, such
as the engine condition monitoring problem addressed in Wang,
Kolmanovsky, and Sun (2016) thatmotivated this study, the uncer-
taintiesmay affect the regressor, entering Eq. (1) in amultiplicative
form in relation to the unknown parameters. In Casini, Garulli, and
Vicino (2014) and earlier literature (see Cerone, 1993; Kuntzevich
& Lychak, 1992; Kuntzevich, Lychak, & Nikitenko, 1988; Norton,
1987), it is shown that FSS in a problemwith constant unknownpa-
rameters is, in general, non-convex. A convex relaxation approach
can be pursued with box-type solutions for FSS, which may lead to
very conservative over-approximations in some cases. A convex re-
laxation approach to a similar problem is pursued in Cerone, Piga,
and Regruto (2012), where the problem involving multiplicative
uncertainties is referred as an Error-in-Variable (EIV) problem. The
setting in Cerone et al. (2012) is different from ours in that Cerone
et al. (2012) explicitly handles the dependence of the regressor
on past outputs while in our health monitoring applications this
dependence does not appear, and hence we focus on the latter
case, which may be referred to as set-membership identification
of linear static systems. When applied in a setting of Cerone et
al. (2012), our algorithms may provide more conservative results
as they do not use extra modeling information. In addition, we
further assume that the true parameters to be positive. We note
that the positiveness of the parameters and the independence of
the regressor from the past system outputs are restrictive with
respect to solving the general set-membership problem for linear
systems affected by bounded errors-in-variables. However, for
several practical applications including the marine engine health
monitoring considered in this paper, these assumptions are rea-
sonable. In engine health monitoring problem, parameters to be
estimated are positive, since they represent physics-based quanti-
ties and the regressor, which consists of the sensor measurements
can be considered to be independent from the measurements at
previous time instants. Furthermore, the casewhen the signs of the
parameters are known and do not change can be easily reduced to
the casewhen parameters are positive by re-defining the regressor
components.

In this paper, we treat the set-membership identification prob-
lem of time-varying parameters in linear models and we account
for both additive uncertainties in uk and multiplicative uncertain-
ties in φk. Under our assumptions, including boundedness of the
time-varying parameters, the FSS is convex and can be computed
by a recursive formula, which is formed by intersecting a prior
estimate and a polyhedron. This polyhedron is defined by an in-
formation set, which consists of all the constraints on the feasible
parameters obtained from themmeasurements at the current time
step.

In order to build corresponding AFSS for the FSS at each time
step, two algorithms are developed in this paper. They are distin-
guished by their ways of processing the m measurements in yk as
well as the criterion of AFSS construction. These m measurements
are segmented into l subsets (l ≤ m), each of which is referred to as
amini-batch in this paper. Within one iteration, the first algorithm
processes a single measurement in yk, which defines a convex
cone constraint on the feasible parameters. Then, this algorithm

computes candidate zonotopes that overbound the intersection
between the prior estimate and the cone. Among all those candi-
dates, the onewithminimal estimated volume is selected and used
as a prior estimate for the next iteration. After m iterations, all the
measurements are processed and an AFSS for the FSS at the current
time step is obtained. For handling time-varying parameters, the
updatedAFSS is propagated forward based on the rate of variations,
providing a prior estimate of the AFSS for the next time step.
This algorithm is referred to as CAZI which stands for Cone And
Zonotope Intersection. In contrast to the first algorithm, the second
algorithm processesmultiplemeasurements in each iteration. This
algorithm focuses on building a zonotope that overbounds the
intersection between the prior estimate and a polyhedron, which
is defined by the constraints associated with the current mini-
batch of measurements. The number of measurements collected
in each mini-batch is limited in order to reduce the computational
complexity. An optimization problem subject to constraints pre-
scribed by linearmatrix inequalities (LMIs) is subsequently derived
for computing the AFSS at each iteration. The P-radius (Le et
al., 2013) of the resulting zonotope is minimized by solving this
optimization problem. The propagations of the solutions from one
iteration to another are as in the CAZI algorithm. Since the second
algorithm emphasizes the way of building overbounds on Polyhe-
dron And Zonotope Intersection, we refer to it as PAZI algorithm.
Furthermore, PAZI algorithm is amenable to the analysis of the
AFSS evolution over iterations. It is also found that the feasibility of
the LMIs is closely related to signal richness and uncertainty level
of the measurements. For illustrating the algorithms, an applica-
tion to the engine condition monitoring problem with unknown
health parameters is considered. Previous research addressing set-
membership fault diagnosis may refer to Blesa, Puig, and Saludes
(2011), Reppa and Tzes (2016), where only additive uncertainties
are considered.

Our earlier conference paper (Wang, Kolmanovsky, & Sun,
2017) has attempted to solve the identification problem with sin-
gle measurement at each time step (i.e. yk ∈ R) and has focused on
the CAZI algorithm. In this paper, this problem is generalized to the
multiple-measurement case, a newPAZI algorithm is introduced to
handle this problem and the estimation performance is compared
with the one of the CAZI algorithm.

The rest of the paper is organized as follows. Mathematical
preliminaries are reviewed in Section 2. The problem formulation
and the FSS properties are discussed in Section 3. The CAZI and PAZI
algorithms are introduced in Section 4 and Section 5, respectively.
In Section 6, the two algorithms are applied to an engine condition
monitoring problem. An example of identifying time-varying pa-
rameters is reported in Section 7. The conclusions are presented in
Section 8.

2. Preliminaries

Before we proceed with the detailed problem formulation, the
following definitions are given since they are used throughout the
paper.

Definition 1 (Polyhedron). A polyhedron is a convex set defined by
intersecting a finite number of half spaces,P = {θ̂ ∈ Rn

: Aθ̂ ≤ b},1
where A ∈ Rm×n, b ∈ Rm.

Definition 2 (Polytope). A polytope is a bounded polyhedron.

Definition 3 (Minkowski Sum). The Minkowski sum of two sets X
and Y in the same linear space, denoted as X ⊕ Y , is a set defined
as X ⊕ Y = {z : ∃x ∈ X, y ∈ Y such that z = x + y}.

1 The inequalities in this paper are element-by-element if not further defined.
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