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a b s t r a c t

This paper studies the problem of determining sensor locations in a large sensor network using only
relative distance (range) measurement. Based on the barycentric coordinate representation, we propose
a totally asynchronous distributed algorithm under DILOC framework due to independence of sensor up-
date instants and unreliable networks with communication delays and packet losses. Through modeling
the asynchronous algorithm as a linear difference equation with time-varying delays, we prove that the
location estimates of sensors are globally convergent to the true coordinates if: (1) time interval between
any two consecutive update instants is bounded from below and above, (2) communication delays and
successive packet losses between sensors are finite. Simulation examples are provided to demonstrate
the effectiveness of the theoretical result.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Node self-localization is of essential significance for WSNs ap-
plied in GPS-denied areas, and is attracting more and more atten-
tion in recent years. However, how to get goodperformance such as
global convergence and high accuracy is still a challenging problem
in the design of distributed localization algorithms. For example,
the second-order cone programming (SOCP) (Doherty, El Ghaoui,
et al., 2001; Tseng & Paul, 2007) has a simpler structure and allows
efficient distributed implementation, but it can just accurately
position up to 80−90% of the sensors; the MDS-based distributed
algorithm (Costa, Patwari, & Hero III, 2006) or gradient-based dis-
tributed localization algorithm (Todescato, Carron, Carli, Franchi,
& Schenato, 2016) ensures only local convergence, which implies
sensors have to be endowedwith someGPS-like instrument for ini-
tialization. The distributed iterative localization (DILOC) algorithm
proposed by Khan, Kar, and Moura (2009) has been proved to be
globally convergent to the true coordinates if some node deploy-
ment restriction is satisfied. The main idea of DILOC is to express
each sensor’s location in a barycentric coordinate representation
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and convert the sensor localization problem into solving a pseudo
linear system with all the nonlinearities hidden in the measured
distances.

So far, most localization algorithms in the literature including
DILOC are established under the assumption of ideal communica-
tion channel and time-invariant network topology. However, due
to the complexity of the practical environment, limited communi-
cation range and noisy channels both interfere with the informa-
tion transmission between sensors. The problem of the effect of
communication delays and packet losses on the convergence and
accuracy of localization algorithms has not been fully addressed.
In D’Amato, Notaro, Mattei, and Tartaglione (2015), only the case
of a constant delay is simulated with some numerical analysis. In
Chagas andWaldmann (2015), the convergence of the localization
algorithm considering the measurement delay is ensured only if
additional information from GPS is gathered besides relative mea-
surements. If relative positions between nodes aremeasurable, the
localization problem can be handled as a consensus problem with
a real or complex Laplacian, and the global convergence of localiza-
tion algorithms can be established within a linear framework even
for caseswhenmeasurement noise, asynchronous communication,
and/or switching topology are involved in the localization process
(Carron, Todescato, Carli, & Schenato, 2014; Lin, Han, Zheng, & Yu,
2017). However, if only rangemeasurement is available, there is no
reference to transform the localization problem to the consensus
problem directly, to the best knowledge of the authors.

Besides, most localization algorithms in the literature are given
in a fully synchronous manner, and only a few references have
discussed asynchronous methods. By using a sequential greedy
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optimization (SGO) method, partially asynchronous localization
algorithm has been proposed in Shi, He, Chen, and Jiang (2010). In
Srirangarajan, Tewfik, and Luo (2008), a totally asynchronous dis-
tributed localization algorithm has been proposed by using SOCP,
but the convergence of the algorithm is shown numerically, not
theoretically. In Todescato et al. (2016), an asynchronous gradient-
based localization algorithm has been provided for networks with
lossy communication. The algorithm is proved to be robust to
packet losses and random delays with integration of GPS informa-
tion for initialization and precise relative position measurements.

The main purpose of this paper is to design an asynchronous
and distributed communication protocol for the barycentric-
coordinate-based localization algorithm that uses only rangemea-
surement and ensures global convergence. Our work generalizes
the DILOC algorithm in a totally asynchronous manner. The algo-
rithm proposed in the paper is robust against any bounded time-
varying communication delays and finite packet losses between
neighboring nodes. By introducing some suitable transformation
of system matrix and casting the iteration of the localization
algorithm as a consensus problem, we theoretically prove that
the algorithm is globally convergent to the true coordinates un-
der these communication uncertainties. Some existed results on
asynchronous consensus algorithms, such as extended delay graph
and quotient graph (Cao, Morse, & Anderson, 2008), switching
frequency estimate (Xiao & Wang, 2008), provide crucial tools for
our convergence analysis.
Notations: Let N+ = {0, 1, 2, . . .}, In = {1, 2, . . . , n} and 0 be
compatible dimensions of zeros. In denotes the identity matrix of
order n. We say that A ≥ 0 (A is nonnegative) if all its entries are
nonnegative. A nonnegative matrix A ∈ Rn×n with the property
that all its row sums are +1 is said to be a stochastic matrix. For
any nonnegative matrix B = [bij] ∈ Rn×n, let Λ(B) = {A =

[aij] | aij equals bij or 0}. We let
∏k

i=1Ai = AkAk−1 · · · A1 denote the
left product ofmatrices. Let |·|mean the cardinality of the set. ⌊a/b⌋
means the maximum integer not greater than a/b.

2. Preliminaries

2.1. Graph theory

A digraph G(V, E) consists of a nonempty finite set V = {v1, v2,
. . . , vn} of nodes and a finite set E ⊂ {(vi, vj) : vi, vj ∈ V} of arcs,
i.e., ordered pairs of nodes. Here, we allow for self-loops, namely,
such arcs as (vi, vi). For (vi, vj) ∈ E(G), vi is called parent node, vj
is called child node, and vi is also called a neighbor of vj. The set of
neighbors of vi is defined by Ni = {vj : (vj, vi) ∈ E}. A node vi in G
is said to be a neighbor of subset U ⊆ V if vi is a neighbor of at least
one node in U . A sub-digraph Gs(Vs, Es) of a digraph G is a digraph
such that the node set Vs ⊆ V and the arc set Es ⊆ E . A path in G
is a sequence vi1 , . . . , vik of nodes such that (vij , vij+1 ) ∈ E(G) for
j = 1, . . . , k − 1.

For two digraphs G1 = (V, E1) and G2 = (V, E2), their union
is denoted by G1 ∪ G2 := G(V, E1 ∪ E2); and their composition
is denoted by G2 ◦ G1 := G(V, Ec), which is defined such that
(vi, vj) ∈ Ec if for some vertex vk, (vi, vk) ∈ E1 and (vk, vj) ∈ E2.
We write Gsl = {G = (V, E) : (vi, vi) ∈ E, ∀vi ∈ V} for the
set of all directed graphs with one self-arc at each node. For any
G1,G2 ∈ Gsl, as (vi, vi) ∈ E(G1), (vj, vj) ∈ E(G2) for all vi, vj ∈ V ,
(vi, vj) ∈ E(G2 ◦ G1) if (vi, vj) ∈ E(G2) or (vi, vj) ∈ E(G1). Thus, we
have G1 ∪ G2 ⊂ G2 ◦ G1.

A node vi of digraph G is said to be a root of G if for each other
node vj in G, there is a path from vi to vj. Digraph G is said to be
strongly rooted at vi, if vi is a neighbor of each other node of G.
In this paper, for digraph sequence {Gk, k ∈ N+} induced by V ,
we say that {Gk, k ∈ N+} is uniformly composed rooted if there
exists an integer sequence 0=κ0 < κ1 < · · · < κl+1 · · · , where

0 < H < κl+1−κl ≤ K < ∞, such thatGCl = Gκl+1−1◦· · ·◦Gκl+1◦Gκl
is rooted for all l ∈ N+.

A weighted digraph G(S) is a digraph G plus a nonnegative
stochastic matrix S = [sij]n×n such that (vi, vj) ∈ E(G) ⇔ sji > 0.
Since the product of stochastic matrices is still a stochastic matrix,
G(Sh) ◦ · · · ◦ G(S2) ◦ G(S1) = G(Sh · · · S2S1) holds for any h ∈ N+.

The following notions are taken from Cao et al. (2008).

Definition 1. A rooted digraph G(V, E) is said to be a hierarchical
digraph with hierarchy {v1, v2, . . . , vn} if it is possible to relabel
the nodes as {v1, v2, . . . , vn} in such a way so that v1 is a root of
G with a self-arc and for i > 1, vi has a neighbor vj lower in the
hierarchy, where by ‘‘vj is lower than vi’’ we mean j < i.

Definition 2. A digraphG(V̄, Ē) induced by V̄ = V1 ∪V2 ∪· · ·∪Vn,
where Vi = {vi1, vi2, . . . , vimi}(mi ≥ 1), is said to be an extended
delay graph if for each i ∈ In the following statements hold
(1) there are self-arcs at each node in {v11, v21, . . . , vn1},
(2) for each j ∈ {2, 3, . . . ,mi}, node vij has only one neighborwhich
is exactly vi(j−1),
(3) every neighbor of Vi which is not in Vi is a neighbor of vi1,
(4) the subgraph of G induced by Vi has {vi1, vi2, . . . , vimi} as a
hierarchy.

Definition 3. For an extended delay graph G induced by node set
V̄ = V1 ∪ V2 ∪ · · · ∪ Vn,Q is said to be the quotient graph ofGwith
node set V = {1, 2, . . . , n} provided that there is an arc (i, j) inQ if
and only if G has an arc from some node in Vi to some node in Vj.

Consider a typical situation that the node sets given in Defini-
tion 2, V1,V2, . . . ,Vn contain the same number of nodes, i.e.,m1 =

m2 = · · · = mn := m. Let us sort all the nodes of the extended
delay graph G by order v11, v21, . . . , vn1, v12, v22, . . . , vn2, . . . , v1m,
v2m, . . . , vnm. Denote P ∈ R(n×m)×(n×m) the adjacency matrix of G
in such an order, which can be partitioned as follows:

P =

[P11 · · · P1m
· · · · · · · · ·

Pm1 · · · Pmm

]
,

where Pij ∈ Rn×n, i, j ∈ {1, . . . ,m}. According to Definitions 2 and
3, we know that

∑m
j=1P1j is an adjacency matrix of G’s quotient

graph Q.
The following lemma is a restatement of Theorem 2 in Cao et al.

(2008).

Lemma 1. For stochastic matrices S(i) corresponding to extended
delay graphs G(i)(i ∈ N+) with the same nodes, if the sequence of
quotient graphs of {G(i), i ∈ N+} is uniformly composed rooted with
one self-arc at each node, as t → ∞ the matrix product

∏t
i=1S(i)

converges exponentially to a matrix of the form 1c, where c is a
nonnegative constant row vector.

2.2. Synchronous DILOC algorithm without communication delay

Westate theDILOC algorithm (Khan et al., 2009) in 2-dimension
Euclidean spaceR2. Consider aWSNwith n nodes. Let κ = {1, 2, 3}
be the set of anchors whose locations are known and denoted by
pa =

[
pT1 pT2 pT3

]T
∈ R3×2. Let Ω = {4, . . . , n} be the set

of sensors whose locations are to be determined and denoted by
ps =

[
pT4 · · · pTn

]T
∈ R(n−3)×2. There are two deployment char-

acteristics required by DILOC, which are described as the following
assumption:

Assumption 1. (1) All sensors lie in the convex hull of the anchors;
(2) each sensor, other than anchors, lies in the convex hull of three
neighbors.
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