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a b s t r a c t

We consider the problem of optimal charging of plug-in electric vehicles (PEVs). We treat this problem as
a multi-agent game, where vehicles/agents are heterogeneous since they are subject to possibly different
constraints. Under the assumption that electricity price is affine in total demand, we show that, for any
finite number of heterogeneous agents, the PEV charging control game admits a unique Nash equilibrium,
which is the optimizer of an auxiliary minimization program.We are also able to quantify the asymptotic
behaviour of the price of anarchy for this class of games. More precisely, we prove that if the parameters
defining the constraints of each vehicle are drawn randomly from a given distribution, then, the value of
the game converges almost surely to the optimum of the cooperative problem counterpart as the number
of agents tends to infinity. In the case of a discrete probability distribution, we provide a systematic way
to abstract agents in homogeneous groups and show that, as the number of agents tends to infinity, the
value of the game tends to a deterministic quantity.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Electric vehicles obtain some or all of their energy from the
electricity grid, and are typically referred to as plug-in electric
vehicles (PEVs). Their penetration is expected to increase signifi-
cantly, since, not only they contribute to pollution reduction, but,
by charging over low electricity price periods, they also serve as
virtual dynamic storage, contributing to the stability of the electric
grid (see Callaway & Hiskens, 2011; Denholm & Short, 2006; Li,
Brocanelli, Zhang, & Wang, 2014; Rahman & Shrestha, 1993). In an
electric vehicle charging control context two cases can be distin-
guished. The first case refers to a set-up where vehicles are social
welfare maximizing entities and cooperate in view of minimizing
the overall population cost. Under this setting, Deori, Margellos,
and Prandini (2016), Deori, Margellos, and Prandini (2018) and
Gan, Topcu, and Low (2013) propose iterative schemes that involve
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every vehicle solving a local minimization program, and show
convergence to the social welfare optimum. In the second case
vehicles act as selfish agents that seek to minimize their local cost,
without being concernedwith social welfare paradigms. This gives
rise to multi-agent non-cooperative games, and the main concern
is the computation of Nash equilibrium strategies. A complete
theoretical analysis is provided in Huang, Caines, and Malhame
(2007) and Lasry and Lions (2007) for stochastic continuous-time
problems, but in the absence of constraints. The deterministic,
discrete-time problem variant, was investigated in Ma, Callaway,
and Hiskens (2013), and was further extended in Grammatico,
Parise, Colombino, and Lygeros (2016) and Parise, Colombino,
Grammatico, and Lygeros (2014) to account for the presence of
constraints. However, for any finite number of agents, an approx-
imate Nash equilibrium is computed, while the exact Nash one is
reached only in the limiting casewhere the number of agents tends
to infinity. The recentwork of Paccagnan, Kamgarpour, and Lygeros
(2016) overcomes this issue under the assumption that vehicles
are aware of the way the total population consumption affects the
price that drives their behaviour.

One challenge associated with the aforementioned stream of
literature is that there is no common awareness on how the re-
sulting Nash equilibrium solution is related to the associated social
welfare optimum. In this paper we follow a pricing set-up similar
to the seminal paper by Arrow and Debreu (1954), and account for
constraint heterogeneity by assuming that the parameters defining
the constraints of each vehicle are drawn randomly from a given

https://doi.org/10.1016/j.automatica.2018.06.043
0005-1098/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2018.06.043
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2018.06.043&domain=pdf
mailto:luca.deori@polimi.it
mailto:kostas.margellos@eng.ox.ac.uk
mailto:maria.prandini@polimi.it
https://doi.org/10.1016/j.automatica.2018.06.043


L. Deori et al. / Automatica 96 (2018) 150–158 151

distribution. We consider a multi-stage variant of the problem,
however, we assume the price is an affine function of the total
consumption. Under this set-up, our paper provides the following
contributions:
(1)We quantify, to the best of our knowledge for the first time, the
limiting value of the price of anarchy (Koutsoupias & Papadimitriou,
2016) for this class of games. The price of anarchy provides the
means to quantify the efficiency of Nash equilibria, and is defined
as the ratio between the worst-case value of the game achieved by
a Nash equilibrium (in our setting there is a unique one) and the
social optimum. We prove that as the number of agents tends to
infinity this ratio tends to one for almost any choice of the random
heterogeneity parameters (Theorem 2). This result extends (Ma et
al., 2013) to the case of heterogeneous agents that are subject to
constraints, without resorting to approximate Nash equilibria and
primal–dual algorithms as in Li and Zhang (2016). As a byproduct
we show that, for any finite number of possibly heterogeneous
agents, the PEV charging control game admits a unique Nash
equilibrium, which is the minimizer of an auxiliary minimization
program (Proposition 4); see also Deori et al. (2017b). This is due to
the fact that the underlying game is potential (Facchinei, Piccialli,
& Sciandrone, 2011), however, our proof line is different and is
based on fixed-point theoretic results. This result opens the road
for the use of iterative algorithms for decentralized computation
of Nash equilibria (Deori et al., 2018; Gan et al., 2013; Paccagnan
et al., 2016).
(2) We provide the discrete time counterpart of the mean-field
game theoretic approach in Huang et al. (2007), treating hetero-
geneity in a probabilistic manner, thus complementing the de-
terministic approaches of Grammatico et al. (2016), Li and Zhang
(2016) and Paccagnan et al. (2016). In particular, we show that
if the distribution of the random parameters that render agents’
constraints heterogeneous is discrete, agents can be abstracted
in homogeneous groups and, for almost any realization of the
random heterogeneity parameters, as the number of agents tends
to infinity, the value of the game tends to a deterministic quantity
(Theorem 3).

It should be noted that our set-up exhibits similarities with
multi-participant market investigations in Caramanis and Foster
(2011), Caramanis, Goldis, Ruiz, and Rudkevich (2012), Caramanis,
Ntakou, Hogan, Chakrabortty, and Schoene (2016) and Huang,
Roozbehani, and Dahleh (2015). In particular, it is shown in Cara-
manis et al. (2012) that under current day-ahead operations partic-
ipants have the incentive to self-dispatch, and the resulting social
welfaremarket clearing prices are not practically viable. This is not
in contrast with our results, since we show that Nash equilibria
and social optima tend to coincide only in the limiting case of an
infinite number of agents, and may differ for finite populations.
Moreover, we consider a stylized architecture without including
a distribution network model.

Section 2 introduces the non-cooperative PEV charging control
game and its social welfare counterpart. Section 3 quantifies the
price of anarchy for the limiting case of an infinite number of
agents. In Section 4, we investigate the effect heterogeneity has in
the value of the game, while Section 5 provides some directions for
future work.

2. Electric vehicle charging control problem

2.1. Cooperative set-up

We first consider the case of m PEVs that seek to determine
their charging profile along some discrete time horizon [0, h − 1]
of arbitrary length h ∈ N so as to minimize the total charging cost
for the entire fleet. This corresponds to a cooperative set-up that is
likely to occur when vehicles belong to the same managing entity.

To this end, let H = {0, 1, . . . , h− 1} and I = {1, . . . ,m}. Consider
the following optimization program:

min
{xit∈R} t∈H

i∈I

∑
t∈H

pt
(∑

i∈I

xit + x0t
)2

(1)

subject to:
∑
t∈H

xit = γ i, for all i ∈ I, (2)

xit ∈ [xit , xit ], for all t ∈ H, i ∈ I, (3)

where xit ∈ R is the charging rate of vehicle i, i ∈ I , at time t , t ∈ H ,
and pt ≥ 0 is an electricity price coefficient at time t . For each
t ∈ H , we denote by x0t ≥ 0 the non-PEVdemandwhich, for a fixed
number of PEVsm, is treated as constant and not as an optimization
variable in the optimization programs below. Similarly to Ma et
al. (2013) and Parise et al. (2014), for all t ∈ H , we assume that
limm→∞x0t/m = x̂0t is constant, allowing the non-PEV demand to
grow linearly in the number of agentsm if x̂0t ̸= 0.

The price of electricity is given by pt (
∑

i∈Ix
it

+ x0t ), and is
assumed to depend linearly on the total PEV and non-PEV demand
through pt . Dependency of price on the PEV demand is affine
due the presence of x0t . Our choice for an affine price function
is a simplification over (Arrow & Debreu, 1954; Gan et al., 2013;
Ma et al., 2013) where convex monotone increasing functions are
allowed, and is motivated by Grammatico et al. (2016), where
an affine function is also employed, as well as by the numerical
investigations of Gharesifard, Basar, and Dominguez-Garcia (2016)
(in the corresponding theoretical analysis more general functions
are allowed). The slope of this function encodes the inverse of
the price elasticity of demand, and is motivated by the fact that
marginal prices in lossless unconstrained energy systems are affine
functions of the total production/demand (Caramanis et al., 2016).
The objective function in (1) encodes the total electricity cost over
[0, h − 1]. Constraint (2) represents a prescribed charging level
γ i

∈ R, γ i > 0, to be reached by each vehicle i at the end of
the considered time horizon H , whereas (3) imposes minimum
(xit ∈ R, xit ≥ 0) and maximum (xit ∈ R, xit < ∞) limits,
respectively, on xit .

For all i ∈ I , let xi = [xi0, . . . , xi(h−1)
]
⊤

∈ R|H|, where |·| denotes
the cardinality of its argument. Let also f : R|H|

× R(m−1)|H|
→ R

be such that, for all i ∈ I , for any (xi, x−i) ∈ Rm|H|,

f (xi, x−i) =

∑
t∈H

xitpt
(∑

j∈I
j̸=i

xjt + xit + x0t
)
, (4)

where by x−i
∈ R(m−1)|H| we imply a vector including the decision

variables of all vehicles except vehicle i (recall that x0t is constant
for any fixedm and hence not included in these vectors). Moreover,
for all i ∈ I , let

X i
=
{
xi ∈ R|H|

:

∑
t∈H

xit = γ i and

xit ∈ [xit , xit ], for all t ∈ H
}
, (5)

denote the constraint set corresponding to vehicle i. Let x =

(x1, . . . , xm) and X = X1
× · · · × Xm, and consider f0 : Rm|H|

→ R
such that f0(x) =

∑
t∈Hx

0tpt (
∑

j∈Ix
jt

+ x0t ), which represents the
cost of non-PEV demand. We can then rewrite (1)–(3) as

P : min
{xi∈X i}i∈I

f0(x) +

∑
i∈I

f (xi, x−i), (6)

and refer to its optimal solution as social optimum. Note that local
utility functions that depend only on the decision vector xi of each
vehicle i, i ∈ I , and are possibly different per vehicle, can be
incorporated in P by means of an epigraphic reformulation (see
Deori et al., 2016).
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