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This paper sets forth a method for reachability analysis of linear dynamic systems in continuous time
that can be used to compute time-domain bounds of states and outputs with floating-point precision.
The focus is on the particular initial conditions and inputs that cause state or output trajectories to
attain their extreme values in time. Inputs can be constant, arbitrary, or Lipschitz continuous waveforms.

Uncertainties in initial conditions and inputs are modeled using zonotopes. The calculations exploit the

Keywords:
Reachability
System analysis

definition of zonotopes and the modal information of the linear system dynamics.
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1. Introduction

In the context of dynamic systems, reachability analysis refers
to the computation of sets that contain all possible trajectories of
the states originating from uncertain initial conditions and driven
by uncertain inputs (Althoff, 2010; Blanchini & Miani, 2008; Girard,
2005; Kurzhanski & Varaiya, 2000, 2014; Le Guernic, 2009). Reach-
ability analysis techniques that rely on ellipsoids (Boyd, El Ghaoui,
Feron, & Balakrishnan, 1994; Kurzhanski & Varaiya, 2000, 2007,
2014), level sets (Mitchell & Tomlin, 2000; Tomlin, Mitchell, Bayen,
& Oishi, 2003), zonotopes (Althoff, Stursberg, & Buss, 2008; Girard,
2005; Girard, Le Guernic, & Maler, 2006), polytopes (Chutinan
& Krogh, 2003), intervals (Lohner, 1987; Maiga, Ramdani, Travé
Massuyeés, & Combastel, 2016; Nedialkov, 2006; Ramdani, Meslem,
& Candau, 2009), support functions (Le Guernic, 2009; Le Guer-
nic & Girard, 2010), and numerical solution to ODEs (Duggirala
& Viswanathan, 2016; Frehse, 2015) have been proposed. These
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methods have been applied to the analysis of aircraft (Tomlin et
al., 2003), autonomous cars (Althoff, 2010; Althoff & Dolan, 2014),
power systems (Althoff, 2014; Chen & Dominguez-Garcia, 2012;
El-Guindy, Han, & Althoff, 2016; Jin et al., 2005; Susuki et al.,
2012), and wind turbines (Villegas Pico & Aliprantis, 2014, 2016).
Computationally tractable reachability analysis techniques have
been devised for linear dynamic systems (Althoff, 2010; Girard,
2005; Girard et al., 2006; Le Guernic, 2009). These approaches
have been extended to hybrid, nonlinear, and differential algebraic
systems, e.g., see Althoff (2010), Althoff (2014) and Dit Sandretto
and Chapoutot (2016). Specialized methods to handle reachability
analysis of discrete systems have been proposed as well (Blan-
chini & Miani, 2008; Rakovi¢ & Fiacchini, 2008; Rakovi¢, Kerrigan,
Mayne, & Lygeros, 2006).

A major thrust has been to develop numerically reliable tools
for studying dynamic systems with uncertain initial conditions
and parameters (Berz & Hoffstdtter, 1998; Berz & Makino, 2002;
CAPD Group, 2017; Dit Sandretto & Chapoutot, 2016; Lohner, 1987;
Makino & Berz, 2006; Nedialkov, 2006). These tools can account
for floating-point errors that arise in computations with finite ma-
chine precision (Gautschi, 2012). Such errors can lead to unreliable
results when assessing, for example, chaotic dynamic systems with
extreme sensitivity to initial conditions (Makino & Berz, 2006).
Another variety of computational tools for reachability analysis
deals with linear systems with uncertain initial conditions and
inputs; these include, for example, State Space Explorer (SpaceEx)
(Frehse et al., 2012) and Continuous Reachability Analyzer (CORA)
(Althoff, 2016). These tools, however, do not account for floating-
point errors (Althoff, 2016; SpaceEx, 2017), which is acceptable in
the analysis of such systems.

One important missing feature from the present variety of
reachability analysis techniques relying on polytopes for linear
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systems is that they do not reveal the inputs that drive state
trajectories to the boundaries of the reachable set (Althoff, 2016;
Frehse et al., 2012). As a common post-processing visualization
step, deterministic simulations with heuristically selected initial
conditions and time-varying inputs are conducted to illustrate con-
tainment within computed reachable sets (Althoff, 2016; Frehse
et al., 2012); however, this approach is not rigorous. Recently, a
technique has been proposed to generate state maximizer trajec-
tories that underapproximate a reachable set as tightly as possible
(Frehse, 2015). The method is based on support functions and the
numerical solution of linear programs and ODEs, and it is computa-
tionally expensive. The particular inputs that yield the maximizer
trajectories do not have a closed-form expression because they are
generated numerically.

Knowing these worst-case inputs can be useful from a system
design perspective. Depending on the application at hand, an in-
put may have certain properties regarding its continuity or rate
of change. For instance, a vehicle’s steering wheel manipulation
can be considered as an unknown-but-bounded, continuous, and,
perhaps, slew rate-limited signal. In wind energy applications, an
input could represent wind speed, which could be modeled as
an unknown-but-bounded and continuous disturbance (Zarate-
Mifiano, Anghel, & Milano, 2013). These examples suggest a need
to account for the continuity properties of the input to reflect the
physical attributes of a system, thereby leading to more realistic
reachable sets. For instance, consider the linear system

d _
() = (j) f;’) X(0)+ (5) u(t) (1)

for given sets of initial conditions x(0) = « - (1/10,0)T with
o € [-1,1] € Randinputsu : [0, T] — [—1, 1]. The solution
of (1) for any coefficient « and input u is

X(t) = o (e‘”cos (wt))+

10\ et sin (wt)

/t (ea(t—f) CcoS (a)(t - T))) u(T)dT- (2)
0

e’ sin (w(t — 1))

The reachable set at time t = T considering all possible initial
conditions and inputs is illustrated in Fig. 1. The sets of initial
condition parameters and inputs that yield the boundary of the
illustrated reachable set are

o*(T, 0) = sgn(cos(wT — 0)) (3)
u*(t; T, 0) = sgn(cos(w(T —t)—0)), T €[0,T] (4)

for 6 € [0, 27r), respectively. [Theorem 7 of Section 3 leads to (3)
and (4).] The angle 6 represents the direction of a normal vector
to a supporting hyperplane of the reachable set, as illustrated in
Fig. 1. The set of input functions that drive the state trajectories
to the boundary are square waves that cycle at w rad/s. These
discontinuous square-wave inputs may be physically unrealistic
depending on the application, hence they are mostly of theoretical
interest.

Calculating the exact reachable set boundary shown in Fig. 1
can be computationally expensive in higher dimensional linear
systems. The calculation depends on the choice of set representa-
tion of the uncertain initial conditions and inputs (e.g., using ellip-
soids, polytopes, zonotopes, or support functions). An alternative
approach consists of calculating extrema of system states, that is,
projections of the reachable set. For example, Fig. 1 illustrates the
upper and lower bounds of the states x{(t) and x,(t) att = T,
so that x;(T) € [x,(T), x1(T)] and x»(T) € [x,(T), xo(T)]. Knowing
state time-domain bounds may suffice to warn a control engineer
about potentially adverse system behavior. If the sets are repre-
sented by zonotopes (as done in this paper), this calculation is exact
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Fig. 1. (a) A reachable set at time T = /2 (gray area) with extrema of the states.
(b) The deterministic input (black trace) that causes the state to reach the boundary
attime T and at & = 7r /4 rad. System parameters are: 0 = —1,w = 4.

(in the sense that it can be based on closed-form expressions) and
computationally tractable.

Similar to other approaches, we rely on zonotope representa-
tions of the sets of initial conditions and inputs (Althoff, 2010; Gi-
rard, 2005). In prior work, zonotope generator expansion (growth
of number of vectors Girard et al., 2006) and the wrapping effect
(uncontrolled set expansion because of the propagation of recur-
ring over-approximations Barbarosie, 1995; Girard et al., 2006)
have been major computational hurdles. To overcome these, gen-
erator expansion has been limited by heuristic reduction tech-
niques (Althoff, 2010; Althoff & Krogh, 2012; Girard, 2005; Girard
et al., 2006), and the wrapping effect has been eliminated by
employing special recursive algorithms (Althoff, 2010; Girard et al.,
2006). However, in the proposed formulation, these problems are
avoided because the technique hinges on closed-form expressions
and does not rely on recursive set-based computations.

In view of the aforementioned issues, the contributions of this
manuscript are: (i) A closed-form formulation for initial condi-
tions and inputs that drive the states and outputs to the exact
reachable set boundary, assuming that the sets of initial conditions
and inputs are represented by zonotopes. To capture particular
physical attributes of a given system, the inputs can be specified
as either constant, completely arbitrary (possibly discontinuous),
or bounded Lipschitz continuous (rate limited), the latter being
the case of most interest and novelty in this work. (ii) Closed-
form expressions that yield exact time-domain bounds of the states
and outputs. This formulation helps expedite the calculations be-
cause the problem is reduced to evaluation of relatively simple
functions. (iii) A computationally inexpensive method to calcu-
late time-domain bounds. The technique relies on the zonotope
representation of sets and a modal factorization of the system
dynamics. Relatively simple integrals are obtained, with analytical
expressions that are evaluated with floating-point precision (for
the constant and arbitrary input cases) or numerically (for the
Lipschitz continuous input case). Significant reductions in compu-
tational time compared to available tools (Althoff, 2016; Frehse et
al.,, 2012) have been observed.

The paper is structured as follows. A concise introduction to
modeling linear dynamic systems with uncertain initial conditions
and inputs is presented in Section 2. Details of the underlying
theoretical background are presented in Section 3. The numerical
implementation of the technique is discussed in Section 4. Illustra-
tive case studies are provided in Section 5. Section 6 concludes the
manuscript.
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