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a b s t r a c t

Optimal control of bilinear systems has been a well-studied subject in the areas of mathematical
and computational optimal control. However, effective methods for solving emerging optimal control
problems involving an ensemble of deterministic or stochastic bilinear systems are underdeveloped.
These burgeoning problems arise in diverse applications from quantum control andmolecular imaging to
neuroscience. In thiswork,we develop an iterativemethod to find optimal controls for an inhomogeneous
bilinear ensemble system with free-endpoint conditions. The central idea is to represent the bilinear
ensemble system at each iteration as a time-varying linear ensemble system, and then solve it in an
iterative manner. We analyze convergence of the iterative procedure and discuss optimality of the
convergent solutions. The method is directly applicable to solve the same class of optimal control
problems involving a stochastic bilinear ensemble systemdriven by independent additive noise processes.
We demonstrate the robustness and applicability of the developed iterative method through practical
control designs in neuroscience and quantum control.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Controlling a population system consisting of a large number
of structurally identical dynamic units is an essential step that en-
ables many cutting-edge applications in science and engineering.
For example, in quantum science and technology, synchronization
engineering, and circadian biology, a central control task is to
design exogenous forcing that guides individual subsystems in the
population or ensemble to behave in a desired or an optimal man-
ner (Ching & Ritt, 2013; Cory, Fahmy, & Havel, 1997; Kiss, Rusin,
Kori, & Hudson, 2007; Ledzewicz & Schättler, 2002; Li & Khaneja,
2006; Pryor, 2006). Such optimal ‘‘broadcast’’ control designs are
of theoretical and computational challenge because, in practice,
only a single or sparsely distributed control signals are available to
engineer individual or collective behavior of many or a continuum
of dynamical systems (Li, Dasanayake, & Ruths, 2013; Phelps, Gong,
Royset, Walton, & Kaminer, 2014; Ruths & Li, 2012).

There exist numerous numerical methods for solving optimal
control problems of nonlinear systems (Rao, 2009), many of which
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rely heavily on applying effective discretization schemes to dis-
cretize the system dynamics and then implementing numerical
optimizations to solve the resulting nonlinear programs (NLPs)
(Gong, Kang, & Ross, 2006). Canonical methods include direct and
indirect shooting methods (Stoer & Bulirsch, 1980; von Stryk &
Bulirsch, 1992) and spectral collocation methods such as the pseu-
dospectralmethod (Gong, Ross, Kang, & Fahroo, 2008). Implement-
ing these commonly-used computationalmethods to solve optimal
control problems involving an ensemble system may encounter
low efficiency, slow convergence, and instability issues. It is be-
cause each subsystem in the ensemble has an identical structure so
that the resulting discretized large-scale NLPs are equipped with
a distinctive sparse structure, and, furthermore, each subsystem
shares a common control input so that these NLPs involve highly
localized and restrictive constraints (Li, Ruths, Yu, Arthanari, &
Wagner, 2011).

In this paper, we study the optimal control of a bilinear en-
semble system with inhomogeneous natural and translational dy-
namics, which models a wide range of practical optimal control
design problems across disciplines, for example, optimal pulse
design in quantum control (Chen, Dong, Long, Petersen, & Rabitz,
2014; Ruths & Li, 2011) andmolecular imaging (Woods,Woessner,
& Sherry, 2006), motion planning of robots in the presence of un-
certainty (Becker & Bretl, 2012), and optimal stimulation of spiking
neurons (Ching&Ritt, 2013). In our previous study,we investigated
ensemble control designs in these compelling applications and,
in particular, focused on devising minimum-energy controls with
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fixed-endpoint constraints (Wang & Li, 2015). Here, we relax the
terminal constraint and study the free-endpoint quadratic optimal
bilinear ensemble control problem, where we consider tradeoffs
between the terminal cost and control energy. The procedure is
based on constructing and solving a corresponding optimal control
problem involving a linear ensemble system at each iteration,
which is numerically tractable as shown in our previous work (Li,
2011; Zlotnik & Li, 2012). Moreover, the established iterative
method is directly applicable to find optimal controls for stochastic
bilinear systems driven by additive noise, such as Poisson coun-
ters and Brownian motion. We note that iterative methods have
been developed for solving free-endpoint optimal control prob-
lems (Hofer & Tibken, 1988) or optimal tracking (Çimen & Banks,
2004) of a single deterministic bilinear system. These previous
studies lay the foundation of our new developments towards solv-
ing optimal control problems involving a bilinear ensemble system
governed by inhomogeneous drift and translational dynamics.

This paper is organized as follows. In the next section, formulate
the optimal control problem involving a single inhomogeneous
bilinear system. We present the iterative method to solve this
optimal control problem and show the convergence of the itera-
tive algorithm by using the fixed-point theorem. In Section 3, we
extend the iterative method to deal with optimal control prob-
lems for bilinear ensemble systems. In Section 4, we illustrate the
robustness and applicability of the iterative method through the
examples of controlling spiking neurons in the presence of jump
processes and pulse design in protein nuclear magnetic resonance
(NMR) spectroscopy.

2. Optimal control of inhomogeneous bilinear systems

In this paper, we study optimal control problems involving an
ensemble of inhomogeneous bilinear systems with state-invariant
drift and translational dynamics of the form
d
dt

X(t, β) = A(β)X(t, β) + B(β)u(t)

+

[ m∑
i=1

ui(t)Bi(β)
]
X(t, β) + g(β), (1)

where X(t, β) ∈ Rn denotes the state, β ∈ K ⊂ Rd is the system
parameter varying on the compact set K in the d-dimensional
Euclidean space; u = (u1, . . . , um)T is the control function with
ui : [0, tf ] → R being piecewise continuous; A ∈ C(K ;Rn×n),
B ∈ C(K ;Rn×m), and Bi ∈ C(K ;Rn×n), i = 1, . . . ,m, are real
matrices whose elements are continuous functions over K , and
g ∈ C(K ;Rn). Specifically, we consider the free-endpoint optimal
control minimizing the cost functional involving the trade-off be-
tween the terminal cost and the energy of the control input.

In the following, we develop an iterative procedure for solving
this challenging optimal ensemble control problem. To fix the idea,
we first illustrate the framework through a free-endpoint, finite-
time, quadratic optimal control problem involving a single deter-
ministic time-invariant inhomogeneous bilinear system. Namely,
we consider the problem

min J =
1
2

∫ tf

0
uT (t)Ru(t) dt + ∥x(tf ) − xd∥2

2,

s.t. ẋ = Ax + Bu +

[ m∑
i=1

uiBi

]
x + g, (P1)

where x(t) ∈ Rn is the state and u(t) = (u1, . . . , um)T ∈ Rm is the
control with each ui piecewise continuous; A ∈ Rn×n, Bi ∈ Rn×n,
and B ∈ Rn×m are constant matrices, and g ∈ Rn is a constant
vector. In the cost functional, R ∈ Rm×m

≻ 0 is a positive definite
weight matrix for the control energy and ∥x(tf ) − xd∥2

2 = (x(tf ) −

xd)T (x(tf ) − xd) represents the terminal cost with respect to the
desired state xd ∈ Rn. In addition, we can represent the time-
invariant bilinear system in (P1) as ẋ = Ax+Bu+

[∑n
j=1xj(t)Nj

]
u+

g , in which wewrite the bilinear term
(∑m

i=1uiBi
)
x =

(∑n
j=1xjNj

)
u

with xj being the jth element of x and Nj ∈ Rn×m for j = i, . . . , n.
We now solve the optimal control problem (P1) by Pontryagin’s

maximum principle. The Hamiltonian of this problem is

H(x, u, p) =
1
2
uTRu + pT

{
Ax +

[
B + (

n∑
j=1

xjNj)
]
u + g

}
,

where p(t) ∈ Rn is the co-state vector. The optimal control is then
obtained by the necessary condition, ∂H

∂u = 0 (since the control u is
unconstrained), given by

u∗
= −R−1ΛTp, (2)

where Λ = B +
∑n

j=1xjNj, and the optimal trajectories of the state
x and the co-state p satisfy, for t ∈ [0, tf ],

ẋi =
[
Ax

]
i −

[
ΛR−1ΛTp

]
i
+ gi, (3)

ṗi = −
[
ATp

]
i + pT

[
NiR−1ΛT

+ ΛR−1NT
i

]
p, (4)

with the boundary conditions x(0) = x0 and p(tf ) = 2(x(tf ) −

xd) from the transversality condition, where xi, pi and [ · ]i, i =

1, . . . , n, are the ith component of the respective vectors. By the
following change of variables,

Ãij = Aij −

[(
NjR−1ΛT

+ ΛR−1NT
j

)
p
]
i
, (5)

Õ = BR−1BT
−

( n∑
j=1

xjNj
)
R−1( n∑

j=1

xjNj
)T

, (6)

we can rewrite (3) and (4) into the form

ẋ = Ãx − Õp + g, x(0) = x0, (7)

ṗ = −ÃTp, p(tf ) = 2(x(tf ) − xd), (8)

which are in the similar form, with an additional inhomogeneous
term g , of the canonical equations that characterize the optimal
trajectories of the LQR problem (Anderson & Moore, 1990).

2.1. Iteration procedures

If the matrices Ã and Õ in (5) and (6), respectively, were known,
then the two-point boundary value problem (TPBVP) described
in (7) and (8) can be solved numerically, e.g., by shooting meth-
ods (von Stryk&Bulirsch, 1992). However, Ã(x, p) and Õ(x) are state
dependent, so that this TPBVP is not straightforward to solve. To
overcome this, we propose to solve it in an iterative manner by
considering the iteration equations

ẋ(k) = Ã(k−1)x(k) − Õ(k−1)p(k) + g, (9)

ṗ(k) = −(Ã(k−1))Tp(k), (10)

with the boundary conditions x(k)(0) = x0 and p(k)(tf ) = 2(x(k)(tf )−
xd) for all iterations k = 0, 1, 2, . . . , where the matrices Ã(k−1)

(x(k−1), p(k−1)) and Õ(k−1)(x(k−1)) are time-varying and defined ac-
cording to (5) and (6), given by

Ã(k)
ij = Aij −

[
(NjR−1(Λ(k))T + Λ(k)R−1Nj)p(k)

]
i
, (11)

Õ(k)
= BR−1BT

−
( n∑
j=1

x(k)j Nj
)
R−1( n∑

j=1

x(k)j Nj
)T

, (12)

with Λ(k)
= B +

∑n
j=1x

(k)
j Nj. In order to solve for (9) and (10), we

let

p(k)(t) = K (k)(t)x(k)(t) + s(k)(t), (13)
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