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a b s t r a c t

This paper presents a novel partial differential equation (PDE)-based framework for controlling an en-
semble of robots, which have limited sensing and actuation capabilities and exhibit stochastic behaviors,
to perform mapping and coverage tasks. We model the ensemble population dynamics as an advection–
diffusion–reaction PDEmodel and formulate themapping and coverage tasks as identification and control
problems for this model. In the mapping task, robots are deployed over a closed domain to gather
data, which is unlocalized and independent of robot identities, for reconstructing the unknown spatial
distribution of a region of interest. We frame this task as a convex optimization problem whose solution
represents the region as a spatially-dependent coefficient in the PDEmodel. We then consider a coverage
problem inwhich the robotsmust performadesired activity at a programmable probability rate to achieve
a target spatial distribution of activity over the reconstructed region of interest. We formulate this task
as an optimal control problem in which the PDE model is expressed as a bilinear control system, with the
robots’ coverage activity rate and velocity field defined as the control inputs. We validate our approach
with simulations of a combined mapping and coverage scenario in two environments with three target
coverage distributions.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past few decades, partial differential equation (PDE)
models of multi-agent systems have been used extensively in
mathematical biology to analyze collective behaviors such as
chemotaxis, flocking, schooling, predator–prey interactions, and
pattern formation (Okubo, 1986). Many of these models are linear
or nonlinear advection–diffusion type PDEs, which describe the
spatiotemporal evolution of probability densities of agents.Mathe-
matical tools such as bifurcation analysis, optimization, and control
theory can be applied to these continuum macroscopic models to
make qualitative and quantitative predictions about the system
behavior. Typically, each PDE model corresponds to a discrete
microscopic model that captures the stochastic and deterministic
actions of individual agents. While these microscopic models are
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more accurate descriptions of the agents’ behavior, the macro-
scopic models enable tractable analysis for large agent numbers.

Recently, this work has motivated the use of similar types of
PDEs to model and control the spatiotemporal dynamics of very
large collectives, or swarms (Francesca & Birattari, 2016), of small,
resource-constrained robots (e.g., Karydis & Kumar, 2016; Sitti et
al., 2015) that are currently being developed for applications such
as environmental monitoring, exploration, surveillance, disaster
response, and biomedical procedures. PDEs have been used to
characterize the distributions of chemotactic robots in a diffusive
fluid environment (Galstyan, Hogg, & Lerman, 2005), miniature
robots inspecting a model of jet turbine blades (Prorok, Correll, &
Martinoli, 2011), and honeybee-inspired agents that aggregate at
the optimal value of a scalar field (Correll & Hamann, 2015). The
parameters of these PDE models can be mapped to control inputs
that drive the robots’ motion and probability rates of switch-
ing between states or tasks, and the collective behavior of the
robots follows the PDE model prediction in expectation. Several
works have exploited this correspondence to control the spa-
tial distribution of an ensemble (Foderaro, Ferrari, & Wettergren,
2014; Milutinovic & Lima, 2006). These control approaches can be
viewed as extensions of stochastic task allocation schemes based
on nonspatial rate equation models (Berman, Halász, Ani Hsieh, &
Kumar, 2009; Correll & Martinoli, 2006; Lerman, Jones, Galstyan,
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& Matarić, 2006; Martinoli, Easton, & Agassounon, 2004). Other
applications of continuum population dynamical models to multi-
agent control include optimized confinement strategies (Haque,
Rahmani, Egerstedt, & Yezzi, 2014), consensus using the theory of
mean field controls (Nourian, Caines, Malhame, & Huang, 2013),
controlled flocking (Piccoli, Rossi, & Trélat, 2014) that includes
non-parallel motions (Han & Ge, 2015), and pattern generation
in the presence of obstacles (Pimenta, Michael, Mesquita, Pereira,
& Kumar, 2008). There has also been some recent work on using
PDEs tomodel Laplacian network dynamics of agents for formation
control; see Elamvazhuthi and Berman (2014), Frihauf and Krstic
(2011), Meurer and Krstic (2011) and references therein.

We apply this PDE-based modeling framework to develop a
control approach for allocating tasks among an ensemble of robots.
In our scenarios, a task is defined as a desired activity that a
robot performs in a certain spatial region of the environment.
The tasks can be performed in parallel, and multiple robots can
be simultaneously allocated to each task. While various deter-
ministic approaches have been developed for multi-robot task
allocation, including centralized and decentralized market-based
techniques (Choi, Brunet, & How, 2009; Dias, Zlot, Kalra, & Stentz,
2006) and centralized methods for optimal task assignment and
trajectory planning (Adler, de Berg, Halperin, & Solovey, 2015;
Turpin, Michael, & Kumar, 2014), their computation and/or com-
munication requirements do not scale well to very large numbers
of robots and tasks. In contrast to these works, we develop a
stochastic approach in which tasks are performed at random times
by unidentified robots with limited computing capabilities and
no global localization. The robots can receive information that is
broadcast from a central supervisor, although they cannot com-
municate among themselves. Such limitations will be common
in swarm robotic platforms, e.g. micro aerial vehicles (Karydis &
Kumar, 2016) and microrobots (Sitti et al., 2015), and in scenarios
where the robots operate inGPS-denied environmentswhere com-
munication is impractical or unreliable. In our proposed approach,
a task allocation emerges from the collective ensemble activity.

We first consider amapping problem inwhich the objective is to
estimate a scalar spatial field fromunlocalized data obtained by the
robots. We then define a coverage problem in which the ensemble
must produce a target spatial density of activity over a region
of interest, which may be estimated in the mapping problem.
For this problem, we express the PDE model as a bilinear control
system (Ball, Marsden, & Slemrod, 1982) and formulate an optimal
control problem that computes the control inputs. Since we do not
assume that agents are capable of global localization or estima-
tion of the local agent population density, we frame the coverage
problem as an open-loop control problem that does not require
feedback on agent positions or densities. We follow the variational
approach described in Tröltzsch (2010) for optimal control of the
PDE model. While there has been some prior work on bilinear
optimal control of systems of PDEs (Annunziato&Borzì, 2014;Ou&
Schuster, 2010), these works do not address the types of PDEs that
we consider. An optimal control problem for a bilinear parabolic
PDE was formulated in Ou and Schuster (2010) with the diffusion
coefficient as the control. In Annunziato and Borzì (2014), bilinear
control of a class of advection–reaction systems was considered;
unlike our PDE models, these systems did not include diffusion.

The mapping and controller synthesis approaches described in
this paper require a central supervisor with the computational ca-
pabilities necessary to solve the associated optimization problems.
Despite this centralized component, the approaches are scalable
with the number of agents in the ensemble since each agent exe-
cutes the same controllers with the same control variables, which
are preprogrammedor broadcast by the supervisor. In our coverage
strategy, there are only three control variables to be computed; in
contrast, the most naive approach to controlling an ensemble of N

agents moving in d dimensions would require the computation of
Nd control inputs.

We first presented our coverage approach in Elamvazhuthi and
Berman (2015), where we introduced a similar optimal control
problem, derived the gradient of the objective functional with
respect to the control parameters, and used a gradient descent
algorithm to compute the optimal control. This paper provides a
complete analysis of our approach in Elamvazhuthi and Berman
(2015) by investigating the well-posedness of the PDE model and
the optimal control problem. The theory of weak solutions that
we use to establish the well-posedness of the PDE model is clas-
sical (Evans, 1998). However, to the best of our knowledge, there
have been no prior results on well-posedness that can be directly
applied to our model, which is a system of PDEs in which diffusion
is present only in one of the species, the control variables are
time-dependent, and a zero-flux boundary condition is imposed
on the boundary of a Lipschitz domain. In this paper, we prove
the existence and uniqueness of solutions of our PDE model by
deriving suitable energy estimates for the solutions. We also use
these derived energy estimates to ensure that the computation
of the gradient, performed using the adjoint equation approach,
is well-posed. Moreover, we prove the existence of an optimal
control for the problem using standard compactness arguments
adapted to the PDE control setting (Tröltzsch, 2010). In addition to
this analysis, our formulation of themapping problem in the same
framework is a novel contribution of this paper; in Elamvazhuthi
and Berman (2015) it was assumed that the environment is known
beforehand.

The paper is organized as follows. Section 2 describes the robot
capabilities and their programmed behaviors during the mapping
and coverage assignments, and Section 3 defines the microscopic
and macroscopic models of the ensemble and its activity during
each assignment. Section 4 defines key mathematical terminology
that is used in Sections 5 and 6 to formulate and analyze the
mapping and coverage objectives, respectively, as optimization
problems that incorporate the macroscopic models. We validate
our approach in Section 7 with simulations in which a region of
interest must first be mapped and then covered with a target
distribution of robot activity, and we conclude in Section 8.

2. Task descriptions and assumptions

We consider a scenario in which (1) a small number of agents
must map a region of interest in an unknown, bounded environ-
ment, which we refer to as the mapping assignment, and then
(2) a larger ensemble of agents must produce a target spatial
distribution of activity within the mapped regions, which we call
the coverage assignment. For instance, this activity could consist of
sensor measurements, or as in our previous work (Elamvazhuthi
& Berman, 2015), contacts with flowers to effect crop pollination.
The mapping and coverage assignments will be formulated in a
decoupled manner by posing them as two separate optimization
problems in terms of their associated mean-field PDE models. We
will then demonstrate through numerical simulations that these
two problems can be solved sequentially in order to achieve the
desired coverage objective.

2.1. Robot capabilities

We assume that the agents lack global localization, inter-agent
communication, and prior data about the environment. Each agent
is equippedwith local sensing capabilities, allowing it to detect and
distinguish between different types of regions within its sensing
range, and a compass, enabling it tomovewith a specified heading.
Additionally, the agents have sufficient memory to store the times
at which they record observations of regions of interest. Similarly,
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