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a b s t r a c t

To make a supervisor comprehensible to a designer has been a long-standing goal in the supervisory
control community. One strategy is to reduce the size of a supervisor to generate a control equivalent
version, whose size is optimistically much smaller than the original one so that a user or control designer
can easily check whether a designed controller fulfils its objectives and requirements. After the first
journal paper on this topic appeared in 1986 by Vaz andWonham, which relied on the concept of control
covers, Su and Wonham proposed in 2004 to use control congruences to ensure computational viability.
This work was later adopted in supervisor localization theory, which aims for a control equivalent dis-
tributed implementation of a given centralized supervisor. Despite these publications some fundamental
questions, which might have been addressed in the first place, have not yet been answered, namely what
information is critical to ensure control equivalence, what information is responsible for size reduction,
and whether partial observation makes the problem essentially different. In this paper we address these
questions by showing that there exists a unified supervisor reduction theory, which is applicable to all
feasible supervisors regardless of whether they are under full observation or partial observation. Our
theory proposes a preorder (called leanness) over all control equivalent feasible supervisors based on their
enabling, disabling andmarking information such that, if a supervisor S1 is leaner than another supervisor
S2, then the size of the minimal control cover defined over the state set of S1 is no bigger than that of S2.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In supervisory control theory (SCT) (Ramadge & Wonham,
1987;Wonham & Ramadge, 1987), the control problem associated
with a discrete-event system (DES) is to enforce controllable and
nonblocking behavior of the plant that is admissible by the specifi-
cation.When applying SCT to a real application, there are two basic
questions that require a user to answer, that is, are we doing the
right thing, and arewe doing things in the rightway. The first ques-
tion is about the correctness of the plant and requirement models.
The second is about correctness of supervisor synthesis, which, if
computational complexity is not a concern, has been adequately
answered by SCT researchers. When computational complexity
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is indeed a concern, several efficient synthesis approaches have
been proposed in the literature, e.g., Feng and Wonham (2008),
Mohajerani, Malik, and Fabian (2014), Su, Van Schuppen, and
Rooda (2010, 2012), which can ensure correct behaviors of the
closed-loop system with low computational complexity. The first
question, on the other hand, has been a long-standing hurdle to
SCT being adopted by industry because so far there is no efficient
way to identify potential errors in plant models or requirement
models. The current practice is to synthesize a supervisor based
on a given plant model and requirements. An empty supervisor
usually indicates a fault either in themodel or in the requirements;
this should prompt the system designer to undertake model or
requirement updates. The current SCT and its relevant tools can
assist the designer to quickly locate the problems in the model
that lead to emptiness of the supervisor. The real challenge is how
to determine whether the plant model and the requirements are
correct, when the supervisor synthesis returns a non-empty super-
visor. In this case it usually requires not only syntactic correctness
but also semantic correctness, i.e., the designer has to understand
the truemeaning and impact of every transition in the synthesized
supervisor. Thus, to make a supervisor small enough for a designer
to understand its function becomes important.

A supervisor carries two types of information: the key infor-
mation at each state for event enabling/disabling and marking,
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and the information that tracks the evolution of the plant. The
latter may contain some redundancy because the plant itself also
carries such evolution information. In principle, it is possible to
remove redundant transitional information from the supervisor,
which will not interfere with the first kind of information, i.e., a
reduced supervisor can still ensure the same control capability as
that of the original supervisor. This is the key idea used in Vaz
and Wonham’s paper on supervisor reduction (Vaz & Wonham,
1986), which relies on the concept of control cover. A control cover
is a collection of subsets of states in a supervisor, in which the
states of each subset are ‘‘control consistent’’ with respect to event
enabling/disabling and state marking; the exact meaning will be
explained later. The authors proved two reduction theorems, and
proposed a corresponding (exponential time) reduction algorithm.
To overcome the computational complexity involved in supervisor
reduction, Su and Wonham made a significant extension in Su
andWonham (2004) by first relaxing the concept of control cover,
then providing a polynomial-time reduction algorithm based on a
special type of cover called control congruence, and finally show-
ing that the minimal supervisor problem (MSP) of computing a
supervisor with minimal state size is NP-hard. A polynomial-time
lower bound estimation algorithm provided in Su and Wonham
(2004) has indicated that in many instances minimal supervisors
can be achieved in polynomial time by using control congruence.
Since then, this reduction algorithm has been used with grat-
ifying results. One major application of supervisor reduction is
in supervisor localization (Cai & Wonham, 2010), which aims to
create a control-equivalent distributed implementation of a given
centralized supervisor.

The supervisor reduction theory proposed in Su and Wonham
(2004) rests on two basic assumptions: (1) only full observation
is considered; (2) the supervisor under consideration represents
a sublanguage of the plant, which can be easily satisfied by ap-
plying supremal synthesis. Since then, many questions have been
raised by users. For example, can we apply supervisor reduction
to partially reduced supervisors (which may not necessarily rep-
resent sublanguages of a given plant) and can we apply super-
visor reduction in cases with partial observation? Some results
have been reported in the literature about the second question,
see e.g., Zhang and Cai (2016). The main objective of supervisor
reduction is to ensure control equivalence between the original
supervisor and a reduced supervisor. The fundamental questions
are (1) Q1: what information ensures control equivalence, even
under partial observation, and (2) Q2: what information deter-
mines the state size of a reduced supervisor, which is the main
performance index of supervisor reduction. Ever since (Su &Won-
ham, 2004; Vaz & Wonham, 1986), these questions are still open.
In this paper we aim to provide an answer. We first propose a
generalized supervisor reduction theory which is applicable to
all feasible supervisors, regardless of whether they are subject to
full observation or partial observation; here a feasible supervisor
does not disable uncontrollable events and always issues the same
control command after strings that are not distinguishable based
on observations. In the case of partial observation, a supervisor
does not in general represent a sublanguage of the plant. We show
that for each feasible supervisor S of a plant G, there exists a
feasible supervisor SUPER derivable from the linguistic definition
of uncertainty subset construction (Wonham, 2016). SUPER has the
‘‘universal’’ property that any feasible supervisor that is control
equivalent to S with respect to G, and non-redundant with respect
to S (i.e. without superfluous transitions), can be projected from
SUPER via a suitable control cover on its state space, namely is
a ‘‘quotient’’ of SUPER with respect to this cover. This result will
answer our first question Q1. After that, we define a preorder
⪯ (referred to as ‘‘leanness’’) on feasible supervisors by using
key information about event enabling/disabling and state marking

such that for any two control equivalent supervisors S1 and S2 with
respect to G, if S1 is leaner than S2, i.e., S1 ⪯ S2, then the minimal
reduced supervisor induced by a minimal control cover on S1 is
no bigger than the one induced by a minimal control cover on S2.
This result provides an answer to the second question Q2. As a
direct consequence of this result, as long as control equivalence
holds, a feasible supervisor under full observation always results
in a reduced supervisor no bigger than the one induced from a
supervisor under partial observation. Our theory is independent
of the specific way of achieving observability, for instance via
the property of normality (Lin & Wonham, 1988) or of relative
observability (Cai, Zhang, & Wonham, 2013), or by direct search
(Lin & Wonham, 1988) — the effect of such a choice is lumped
into the property of control feasibility, which states that a feasible
supervisor must apply the same control law to all transitional
sequences which cannot be distinguished based on observations.

The remainder of the paper is organized as follows. In Section 2,
we provide preliminaries on supervisor reduction. In Section 3 we
discuss critical information for ensuring control equivalence. Then
in Section 4 we address information that determines reduction
efficiency. We draw conclusions in Section 5.

2. Preliminaries on supervisor reduction

Given an arbitrary finite alphabetΣ , letΣ∗ be the free monoid
on Σ whose elements are all the finite strings of zero or more
elements from Σ , with the empty string ϵ being the identity
element and string concatenation being the monoid operation.
Given two strings s, t ∈ Σ∗, s is called a prefix substring of t ,
written as s ≤ t , if there exists s′ ∈ Σ∗ such that ss′ = t , where
ss′ denotes the concatenation of s and s′. Any subset L ⊆ Σ∗ is
called a language. The prefix closure of L is defined as L = {s ∈

Σ∗
|(∃t ∈ L) s ≤ t} ⊆ Σ∗. Given two languages L, L′

⊆ Σ∗, let
LL′

:= {ss′ ∈ Σ∗
|s ∈ L ∧ s′ ∈ L′

} denote their concatenation. Let
Σ ′

⊆ Σ . A mapping P : Σ∗
→ Σ ′∗ is called the natural projection

with respect to (Σ,Σ ′), if

(1) P(ϵ) = ϵ,
(2) (∀σ ∈ Σ) P(σ ) :=

{
σ if σ ∈ Σ ′,

ϵ otherwise,
(3) (∀sσ ∈ Σ∗) P(sσ ) = P(s)P(σ ).

Given a language L ⊆ Σ∗, P(L) := {P(s) ∈ Σ ′∗
|s ∈ L}. The inverse

image mapping of P is

P−1
: 2Σ

′∗

→ 2Σ
∗

: L ↦→ P−1(L) := {s ∈ Σ∗
|P(s) ∈ L},

where 2Σ
′∗

and 2Σ
∗

denote the power sets ofΣ ′∗ andΣ∗, respec-
tively. When L is a singleton, say L = {s}, we will using P−1(s) to
denote P−1({s}) for simplicity throughout the paper.

A plant is modeled as a deterministic finite-state automaton,
G = (X,Σ, ξ , x0, Xm), where X stands for the state set, Σ for the
alphabet, ξ : X ×Σ → X for the (partial) transition function, x0 for
the initial state and Xm ⊆ X for themarker state set. Herewe adopt
the notation in Wonham (2016) and write ξ (x, σ )! to denote that
the transition ξ (x, σ ) is defined. Thedomain of ξ canbe extended to
X×Σ∗, where ξ (x, ϵ) = x for all x ∈ X , and ξ (x, sσ ) := ξ (ξ (x, s), σ ).
The closed behavior of G is defined as L(G) := {s ∈ Σ∗

|ξ (x0, s)!},
and the marked behavior of G is Lm(G) := {s ∈ L(G)|ξ (x0, s) ∈ Xm}.
G is nonblocking if Lm(G) = L(G). We say G is reachable if for each
x ∈ X there exists s ∈ L(G) such that ξ (x0, s) = x. From now
on we consider only reachable automata. We denote by |X | the
size of the state set X . In some circumstances, when the state set
is not explicitly mentioned, we also write |G| for the size of an
automaton, namely the size of its state set. Given two finite-state
automata Gi = (Xi,Σ, ξi, xi,0, Xi,m) (i = 1, 2), the meet of G1 and
G2, denoted as G1 ∧G2, is a (reachable) finite-state automaton such
that L(G1 ∧G2) = L(G1)∩ L(G2) and Lm(G1 ∧G2) = Lm(G1)∩ Lm(G2).
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