
Automatica 96 (2018) 306–313

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

A separation theorem for guaranteed H2 performance through matrix
inequalities✩

Sofie Haesaert a,*, Siep Weiland a, Carsten W. Scherer b

a Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
b Department of Mathematics, University of Stuttgart, Stuttgart, Germany

a r t i c l e i n f o

Article history:
Received 22 June 2017
Received in revised form 24 February 2018
Accepted 14 June 2018

Keywords:
Separation of estimation and control
H2-norm
Matrix inequalities
Linear time-invariant systems
Discrete-time

a b s t r a c t

The usage of convex optimisation programs that leverage linear matrix inequalities allows for numerical
solutions to the design of output-feedback controllers with guaranteed H2 performance. As decreed by
the classical separation theorem for the related LQG control problem, the H2 control problem admits an
optimal solution in terms of those of the separate optimal state-estimation and state-feedback design
problems. This work details a new and alternative proof of this separation theorem. The proof builds on
techniques for (linear)matrix inequalities and shows, in particular, that feasible but sub-optimal solutions
of the state-feedback and the state-estimation problem yield a sub-optimal output feedback controller
with guaranteed H2 performance.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In control theory, the separation principle usually refers to a
controller synthesis methodology in which a state estimator is
designed independently from a state-feedback regulator so as to
result in a controller that processes measurements to control in-
puts. A classic case is the linear quadratic Gaussian control problem
for a linear time-invariant plant, in which an optimal controller is
obtained as the interconnection of the Kalman filter thatminimises
the asymptotic covariance of a state estimation error and the
optimal solution of a linear quadratic regulator problem. In this
situation, the separation principle leads to an optimal controlled
system, and one refers to the separation theorem instead of a
principle.

There has been a consistent trend to perform computations
for optimal control design in the realm of convex optimisation
programs defined through constraints in terms of linear matrix
inequalities (LMIs). Via interior point methods, these problems
can be solved in polynomial time to any required precision. For
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example, the sub-optimalH2 output-feedback control design prob-
lem can be phrased as a convex optimisation problem (Scherer,
Gahinet, & Chilali, 1997), but until today it is restricted to lead to a
full, that is unstructured, description of the controller without any
separation property.

In this paper, we connect the feasibility of the matrix inequal-
ities in the design problems for the estimator and state-feedback
gain to the feasibility conditions of the fully parameterised H2-
output feedback problem. As a result, we obtain a new proof
of the classical separation theorem that is only based on matrix
inequality arguments. As a new feature, we show that any pair of
sub-optimal solutions to the state-estimation and state-feedback
control problem gives rise to a sub-optimal solution to the output
feedback problemwith a controller that admits a separation struc-
ture. This has particular relevance for multi-objective design prob-
lems where upper-bounds on achievable or realised performance
are explored to meet additional design specifications. Indeed, sep-
aration of feasibility tests of the underlying convex optimisation
problems may provide substantial insight and simplify the design
process for these multi-objective controllers.
The separation theoremwas first proven for continuous-timemod-
els byWonham (1968). For discrete-time models, it was shown by
using dynamic programmingby Joseph andTou (1961) and Striebel
(1965). A more recent proof of separation by Davis and Zervos
(1995) exploits Lagrange multipliers for quadratic performance
objectives in the discrete-time case. The separation theorem for
the existence and construction of H2 optimal controllers, proven
in Zhou, Doyle, Glover, et al. (1996), is a more delicate issue, as was
addressed in Saberi, Sannuti, and Chen (1995).
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The paper is structured as follows. The main results are given
in Section 4 and are preceded with the problem statement and
background material in Sections 2 and 3. Conclusions are given in
Section 5. In the remaining part of this section, we introduce the
notation and recap some properties of the H2-norm.

Notation and the H2-norm. Denote the set of n × n real symmetric
matrices as Sn. If A, B ∈ Sn, A ≺ (⪯)B means that A − B is negative
(semi-)definite; this is equivalently expressed as B ≻ (⪰)A. If A is
a square matrix, tr(A) is its trace, and A is said to be stable (Schur)
if all its eigenvalues are contained in the open unit disk.

The discrete-time H2 norm of the transfer matrix T (z) = C(zI −
A)−1B with a stable matrix A (and with real matrices A,B, C of
appropriate dimension) is given by

∥T∥H2 =

√
1
2π

∫ π

−π

tr
[
T (ejω)T (ejω)∗

]
dω. (1)

If the realisation is minimal, then ∥T∥
2
H2

= tr(CYCT ) where Y ≻ 0
is the unique solution of the Stein equation Y − AYAT

− BBT
=

0. Upper-bounds on the H2 norm are characterised as follows
(Scherer & Weiland, 2000).

Proposition 1. For any λ > 0, the following statements are equiva-
lent:

(1) ∥T∥H2 < λ and A is stable;
(2) there exists a Y ≻ 0 such that

Y − AYAT
− BBT

≻ 0,
√
tr(CYCT ) < λ; (2a)

(3) there exists an X ≻ 0 such that

X − ATXA − CTC ≻ 0,
√
tr(BTXB) < λ; (2b)

(4) there exist symmetric Y and Z such that[
Y − BBT AY

YAT Y

]
≻ 0,

[
Y YCT

CY Z

]
≻ 0, tr Z < λ2

; (2c)

(5) there exist symmetric X and Z such that[
X − CTC ATX

XA X

]
≻ 0,

[
X XB

BTX Z

]
≻ 0, tr Z < λ2. (2d)

2. Problem statement

Consider a systemwhose dynamics are given by themathemat-
ical model
xt+1 = Axt + But + Bwwt

yt = Cxt + Dwwt , zt = Czxt + Dzut
(3)

where xt ∈ Rn is the state, ut ∈ Rm is the control input, yt ∈

Rp is the measured output available for control, and zt ∈ Rq is
the (unmeasured) performance output. A, B, C are real matrices
of appropriate dimensions. The system is subject to stochastic
disturbances wt ∈ Rwn that affect the state transitions and mea-
surements, modelled as a white noise sequence with a standard
Gaussian distribution N

(
0, Iwn

)
.

Hypotheses on system matrices in (3).

(H1a) (A, B) is stabilisable and (C, A) is detectable;
(H1b) DT

zDz ≻ 0 and DwDT
w ≻ 0;

(H1c) DT
z Cz = 0 and DwBT

w = 0.
(H2) (Cz, A) is observable and (A, Bw) is controllable.

All throughout the paper, we assume (H1a)–(H1c) to hold. Note
that (H1c) is only introduced for notational brevity and can be
easily removed. Some results on optimality are proven via Riccati
equations and require (H2).

Controller and controlled system. Consider the set of controllers K
with elements K ∈ K defined as

xKt+1 = AKxKt + BKyt , uK
t = CKxKt . (4)

The interconnection of system (3) with controller (4), defined by
setting uK

= u, yields the controlled system

ξt+1 = Aξt + Bwt , zt = Cξt (5)

with

A =

[
A BCK

BKC AK

]
, B =

[
Bw

BKDw

]
, C = [ Cz DzCK ] . (6)

Controller design. Consider the objective to choose controller pa-
rameters (AK, BK, CK) that render the controlled system (5) stable
and minimise its H2-norm. By Proposition 1, this can be expressed
as

λinf := inf
λ,Y,K∈K

λ s.t.
√
tr(CYCT ) < λ, Y ≻ 0,

Y − AYAT
− BBT

≻ 0
(7)

or, equivalently, as

λinf := inf
λ,X ,K∈K

λ s.t. (2b), X ≻ 0. (8)

Generally, the objective is twofold: one aims to compute the opti-
mal value λinf and to find, if it exists, an optimal controller K∗

∈ K.
A controller is optimal if, for each λ > λinf, there exists some Y
(respectively X ) for which the inequalities in (7) (respectively (8))
are satisfied. Observe that the order of the controller K ∈ K is left
free.

If viewed as a feasibility problem in Y and in the controller
parameters (AK, BK, CK) for some fixed λ > 0, we refer to this
controller synthesis problem as the sub-optimal H2 control problem,
which admits a numerically efficient solution through polynomial
time methods (Masubuchi, Ohara, & Suda, 1998; Scherer et al.,
1997) by conversion to a convex optimisation problem with con-
straints given as linearmatrix inequalities.With Eq. (35) in Scherer
et al. (1997), this conversion is based on a reparameterisation of
the controller matrices, and the design algorithm leads to a sub-
optimal H2 controller without a particular structure.

In this work, we are interested in generating structured optimal
controllers as they would intuitively result from using the separa-
tion principle. This means that the controller should be the com-
position of the Kalman filter and the optimal static state-feedback
controller. In the sequel, we develop a separation theorem on the
basis of matrix inequalities in which feasibility of the separated
matrix inequalities allow us to define a controller with guaran-
teed H2 performance. More precisely, we analyse under which
conditions optimal or sub-optimal solutions of the state-estimation
problem (see Section 3)

inf
Q≻0,L

tr CzQCT
z (9)

s.t. Q − (A + LC)Q (A + LC)T

− (Bw + LDw)(Bw + LDw)T ≻ 0
(10)

and of the state-feedback problem (see Section 3)

inf
F ,P≻0

tr BT
wPBw (11)

s.t. P − (A + BF )TP(A + BF )
− (Cz + DzF )T (Cz + DzF ) ≻ 0

(12)

can be used to find an optimal or sub-optimal structured controller
that solves the output-feedback problems in (7) or (8).Wewill only
give the results for (7), since those for (8) follow trivially by duality.
At this point, it is important to emphasise the well known fact that
one can routinely convert (9)–(10) and (11)–(10) into semi-definite
programs.
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