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a b s t r a c t

This paper proposes a unified framework of iterative learning control for typical flexible structures under
spatiotemporally varying disturbances. Input constraints and the external disturbances are smoothly
tackled through hyperbolic tangent functions. Boundary iterative learning control (BILC) laws are pro-
posed to guarantee the learning convergence. The closed-loop systems can converge to zero along the
iteration axis on the basis of time-weighted Lyapunov–Krasovskii-like composite energy functions (CEF).
Simulations are implemented to illustrate the effectiveness of the proposed BILC schemes.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Flexible structures are widely used in robots, spacecrafts, ma-
rine risers, etc., for their light weight, low energy consumption
and flexibility (Cai & Krstic, 2016; Do, 2017; Jin & Guo, 2015;
Smyshlyaev, Guo, & Krstic, 2009; Wu & Wang, 2014). Based on
extended Hamilton’s principle, flexible structures are modeled as
distributedparameter systems.Different fromordinary differential
equation (ODE) systems (Ge, Hang, Lee, & Zhang, 2001; Krstic &
Smyshlyaev, 2008; Li, & Yao, 2016; Liu & Tong, 2017; Yang & Liu,
2018), partial differential equation (PDE) systems are much more
complex not only for two or more variables involved but also for
the coupling in the variables (Guo & Jin, 2015a, b; Karafyllis &
Krstic, 2018; Luo, Huang, Wu, & Yang, 2015; Wang, Liu, Ren, &
Chen, 2015; Wang, Zhang, Wei, Zheng, & Li, 2017; Wu, Wang, &
Guo, 2016;Wu&Zhu, 2017). In addition, external disturbances and
nonlinear inputs are frequently encountered in engineering (Li,
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Chen, Fu, & Sun, 2016) and should be taken into consideration for a
more accuratemodel (Fan, 2014; Zhang&Hou, 2015). Disturbances
are rejected frequently by using symbolic functions (He, Meng,
Huang, & Li, 2018; He, He, Shi, & Sun, 2017). Input saturation can
be tackled by designing auxiliary systems (Sun, Huo, & Jiao, 2017;
Zhou, Wang, Wu, Li, & Du, 2017). In Wen, Zhou, Liu, and Su (2011),
input saturation, composed of a hyperbolic tangent function and
a bounded term, was addressed through Nussbaum functions and
adaptive laws.

Until now, someworks have proposed iterative learning control
(ILC) for distributed parameter systems (He et al., 2018; Huang &
Xu, 2011; Huang, Xu, Li, Xu, & Yu, 2013; Meng & He, 2017; Qu,
2002; Zhao & Rahn, 2008). In Huang and Xu (2011) and Huang
et al. (2013), ILC was designed for PDE systems under distributed
disturbances, which were assumed to be Lipschitz continuous.
In Qu (2002) and Zhao and Rahn (2008), without external distur-
bances and nonlinear inputs considered, a flexible moving string
system was addressed by ILC. In order to tackle some complex
issues, including output constraints, external disturbances, etc.,
boundary ILC (BILC) is designed by combining a traditional ILC
law and feedback terms of such issues, at the basis of composite
energy functions (CEFs) (Xu, Tan, & Lee, 2004). In He et al. (2018)
andMeng and He (2017), symbolic functions were adopted in BILC
laws for disturbance rejection and input saturation. However, this
paper proposes a continuously differentiable BILC law for flexible
structures.
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The remainder of this paper is organized as follows. In Section 2,
systemmodels are presented along the iteration axis. By proposing
the unified BILC law in Section 3, learning convergence is proved in
Section 4. Simulation examples are provided in Section 5. Section 6
summarizes the main results of this paper.

2. Problem formulation

This paper considers a flexible string, an Euler–Bernoulli beam
and a Timoshenko beam with external disturbances and input
constraint. In the above systems, rotation and transverse vibration
are encountered, which are two basic motions for one-dimension
flexible structures. Three common deformations, including shear
deformation, torsion and bending, are all considered in the one-
dimension flexible structures. In the presence of external distur-
bances and nonlinear inputs, the chosen flexible structures are
common in engineering. Let fsj(x, t), fej(x, t) and ftj(x, t) represent
spatiotemporally varying disturbances. dusj(t), duej(t), dutj(t) and
dτ tj(t) denote time-varying disturbances. The following assump-
tion is made for the considered disturbances:

Assumption 1. External disturbances are assumed to be bounded
and some known positive constants can be found, satisfying
|fsj(x, t)| ≤ f̄s, |fej(x, t)| ≤ f̄e, |ftj(x, t)| ≤ f̄t , |dusj(t)| ≤ d̄us, |duej(t)|
≤ d̄ue, |dutj(t)| ≤ d̄ut and |dτ tj(t)| ≤ d̄τ t for ∀t ∈ [0, T0] and j ∈ N.

In the following tabular, E-beam and T-beam represent Euler–
Bernoulli beam and Timoshenko beam, respectively.

Nomenclature
ρs, ρe, ρt Unit mass per unit length of the string,

E-beam or T-beam
Ls, Le, Lt Length of the string, E-beam or T-beam
Ms, Me, Mt Mass of tip payload attached at the bottom

of the string, E-beam or T-beam
Ts, Te Tension of the string or E-beam
EIe, EIt Bending stiffness of the E-beam or T-beam
Ipt Uniform mass moment of inertia of the

cross section of T-beam
Kt ktAtGt
kt A positive constant depending on the shape

of the cross section
At Cross-sectional area
Gt Modulus of elasticity in shear
Jt Inertia of the tip payload attached at the

bottom of T-beam
wsj, wej, wtj Lateral deflections of the string, E-beam or

T-beam
ẇsj, ẇej, ẇtj Velocity of the string, E-beam or T-beam
ẅsj, ẅej, ẅtj Acceleration of the string, E-beam or

T-beam
φtj Angle displacement of the T-beam
φ̇tj Angle velocity of the T-beam
φ̈tj Angle acceleration of the T-beam

As shown inHe andGe (2012) andHe et al. (2018), three flexible
structures can be described as⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρsẅsj(x, t) = fsj(x, t) + Tsw′′

sj(x, t),
wsj(0, t) = 0,

Msẅsj(Ls, t) = u∗ tanh(
u0j(t)
u∗

) + dusj(t)
−Tsw′

sj(Ls, t),

(1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρeẅej(x, t) = fej(x, t) − EIew′′′′

ej (x, t)
+Tew′′

ej(x, t),
wej(0, t) = 0,
w′

ej(0, t) = 0,
w′′

ej(Le, t) = 0,

Meẅej(Le, t) = u∗ tanh(
u0j(t)
u∗

) + EIew′′′

ej (Le, t)
−Tew′

ej(Le, t) + duej(t),

(2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Iρt φ̈tj(x, t) = EItφ′′

tj(x.t)−Kt [φtj(x, t)−w′

tj(x, t)],
ρtẅtj(x, t) = ftj(x, t) − Kt [φ

′

tj(x, t) − w′′

tj(x, t)],
wtj(0, t) = 0,
φtj(0, t) = 0,

Mtẅtj(Lt , t) = u∗ tanh(
u0j(t)
u∗

) + dutj(t)
+Kt [φtj(Lt , t) − w′

tj(Lt , t)],

Jt φ̈tj(Lt , t) = τ ∗ tanh(
τ0j(t)
τ ∗

) − EItφ′

tj(Lt , t)
+dτ tj(t),

(3)

where u∗ > 0, τ ∗ > 0 and t ∈ [0, T0].

Assumption 2 (Xu & Yan, 2004). In this paper, alignment condi-
tions are assumed as follows:

(1) For the flexible string system, wsj(x, 0) = ws(j−1)(x, T0) and
ẇsj(x, 0) = ẇs(j−1)(x, T0);

(2) For the Euler–Bernoulli beam system, wej(x, 0) = we(j−1)
(x, T0) and ẇej(x, 0) = ẇe(j−1)(x, T0);

(3) For the Timoshenko beam system, wtj(x, 0) = wt(j−1)(x, T0),
ẇtj(x, 0) = ẇt(j−1)(x, T0), φtj(x, 0) = φt(j−1)(x, T0) and φ̇tj(x, 0) =

φ̇t(j−1)(x, T0);

3. Control design

Comparing with the traditional ILC u0j(t) = u0(j−1)(t) − Fwj(t)
(Meng, Jia, Du, & Yu, 2012; Xu & Tan, 2003), the form is expanded
in this paper: (I) the learning term u0(j−1)(t) is updated as u1(j−1)(t);
(II) the feedback term Fwj(t) is changed from state feedbacks to
feedbacks of system states, external disturbances, nonlinear in-
puts, etc. Therefore, the BILC law in nature is an extended ILC law
and is mostly model-free. In order to present the model-free merit
of the BILC methodology, a unified but continuously differentiable
BILC scheme is designed for three typical flexible structures.

The unified BILC law is expressed as⎧⎪⎨⎪⎩
u0j(t) = u1j(t) − ν1κf tanh(ν5κwj(t))

−(ν2κd + ν3κu) tanh(ν4κwj(t)),

u1j(t) = u∗ tanh(
u1(j−1)(t)

u∗
) − γ κwj(t),

(4)

where u1(−1)(t) = 0, κu = u∗

0(1 − tanh(1)) > 0 and ν1-ν5
and γ are positive constants. κwj(t) denotes the feedback terms of
system states. κf > 0 represents the upper bound of distributed
disturbances. κd > 0 is the upper bound of boundary disturbances.

Property 1. For the proposed BILC law (4), the following inequality is
obtained (Xu et al., 2004):

|u0j(t) − u∗sat(
u0j(t)
u∗

, 1)|

≤ (γ + ν1κf ν5 + (ν2κd + ν3κu)ν4)|κwj(t)| (5)

where the saturated function is defined as

sat(
u0j(t)
u∗

, 1) =

{
sgn(u0j(t)), if |u0j(t)| ≥ u∗,
u0j(t)
u∗

, if |u0j(t)| < u∗,
(6)
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