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a b s t r a c t

This paper studies the problem of selecting a submatrix of a positive definite matrix in order to achieve
a desired bound on the smallest eigenvalue of the submatrix. Maximizing this smallest eigenvalue has
applications to selecting input nodes in order to guarantee consensus of networks with negative edges as
well as maximizing the convergence rate of distributed systems. We develop a submodular optimization
approach to maximizing the smallest eigenvalue by first proving that positivity of the eigenvalues of a
submatrix can be characterized using the probability distribution of the quadratic form induced by the
submatrix. We then exploit that connection to prove that positive-definiteness of a submatrix can be
expressed as a constraint on a submodular function. We prove that our approach results in polynomial-
time algorithms with provable bounds on the size of the submatrix. We also present generalizations to
non-symmetric matrices, alternative sufficient conditions for the smallest eigenvalue to exceed a desired
bound that are valid for Laplacian matrices, and a numerical evaluation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

An increasingly widespread approach to controlling networked
systems is to select a set of nodes to perform actuation (e.g., se-
lecting generators to participate in power system control, or desig-
nating agents as leaders in multi-agent systems), while relying on
network effects to steer the remaining nodes to a desired state (Liu,
Slotine, & Barabási, 2011; Tanner, 2004). Mathematically, this ap-
proach is oftenmodeled as creating an induced submatrix, inwhich
rows and columns corresponding to the leaders are removed (Ba-
rooah & Hespanha, 2007). The dynamics of the remaining network
nodes are then specified by the induced submatrix. A prominent
example of this class of systems is the grounded Laplacian matrix,
which is created in consensus networkswhen the states of a subset
of leader nodes are set identically to zero (Pirani & Sundaram,
2014). Such matrices arise naturally in distributed estimation,
formation control, and other multi-agent system problems.

The performance of such systems is known to be heavily influ-
enced by the spectrum of the induced submatrix (Pirani & Sun-
daram, 2016). Of particular importance is the smallest eigenvalue
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of the induced sub-matrix. In Rahmani, Ji, Mesbahi, and Egerstedt
(2009), it was shown that the rate of convergence of a consensus
network is determined by the magnitude of the smallest eigen-
value of the grounded Laplacian matrix. The sign of the smallest
eigenvalue determines whether the system is stable. Networks
with antagonistic interactions, such as biological regulatory net-
works with repressive connections or social networks in which
users disagree, may be unstable (Chen, Liu, Chen, Khong, Wang,
Başar, Qiu, & Johansson, 2016; Meng, Shi, Johansson, Cao, & Hong,
2016; Zelazo & Brger, 2017). Ensuring consensus in such systems
is equivalent to selecting a submatrix in which all eigenvalues are
positive.

These existing works show that the smallest eigenvalue of
the grounded Laplacian matrix determines the stability and con-
vergence of the networked system (Pirani & Sundaram, 2016;
Rahmani et al., 2009; Zelazo & Brger, 2017). Hence, an analytical
approach to maximizing the smallest eigenvalue would lead to
improved performance of such systems. However, so far to the best
of our knowledge there are no computational techniques for max-
imizing the smallest eigenvalue. The main difficulty is that, unlike
metrics such as the inverse trace (Clark, Bushnell, & Poovendran,
2014) and convergence error (Clark, Alomair, Bushnell, & Pooven-
dran, 2014), the smallest eigenvalue of the grounded Laplacian is
not known to possess any structure such as submodularity that
enables development of efficient optimization algorithmswith for-
mal guarantees. Hence, while an efficient input selection algorithm
with provable guarantees would improve the stability, robustness,

https://doi.org/10.1016/j.automatica.2018.06.016
0005-1098/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2018.06.016
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2018.06.016&domain=pdf
mailto:aclark@wpi.edu
mailto:qhou@wpi.edu
mailto:lb2@uw.edu
mailto:rp3@uw.edu
https://doi.org/10.1016/j.automatica.2018.06.016


A. Clark et al. / Automatica 95 (2018) 446–454 447

and convergence rate of networked systems, at present no such
algorithms that maximize the smallest eigenvalue are available.

In this paper, we present a submodular optimization approach
to input selection in order to maximize the smallest eigenvalue of
an induced submatrix such as the grounded Laplacian. Specifically,
we investigate the problem of selecting a minimum-size input
set in order to guarantee that the smallest eigenvalue is above a
desired threshold. Our approach is as follows. We first prove that
the eigenvalue condition holds if and only if an induced quadratic
form is positive with probability one. Second, we show that this
condition can bemapped to a constraint on a submodular function,
equal to the probability that the quadratic form is zero when the
input is a Gaussian random vector. Finally, we prove that this
probability can be computed in polynomial time.

We analyze the optimality guarantees of our proposed ap-
proach and prove that the number of selected input nodes is
within a logarithmic bound of the minimum-size input set. We
show that the submodular optimization approach is applicable to
problems including ensuring consensus of signed networks and
maximizing convergence rate, and also explore generalizations to
non-symmetric matrices (e.g., arising from directed graphs). We
propose alternative sufficient conditions that are applicable to
Laplacian matrices. Our sufficient conditions consist of bounds on
the inverse trace and log determinant of the submatrix, and are
shown to be submodular via spectral submodularity techniques.
Our approach is validated through numerical study.

The paper is organized as follows. Section 2 reviews the related
work. Section 3 gives relevant background. Section 4 presents the
problem formulation and two motivating applications. Section 5
presents our proposed submodular framework. Section 6 discusses
extensions to non-symmetric matrices and alternative sufficient
conditions. Section 7 contains numerical results. Section 8 con-
cludes the paper.

2. Related work

The importance of the smallest eigenvalue of grounded Lapla-
cian graphs was identified in Rahmani et al. (2009), where it
was shown that the magnitude of the smallest eigenvalue de-
termines the rate of convergence to consensus. The eigenvalues
of the grounded Laplacian were further studied in Pirani and
Sundaram (2014, 2016). While these works analyzed the impact
of the smallest eigenvalue and developed bounds on the smallest
eigenvalue for different classes of graph, the problem of selecting
nodes based on this criterion remains open.

Consensus in networks with both positive and negative edge
weights, in which the negative weights represent antagonistic in-
teractions between nodes, has been studied in Alemzadeh, de Ba-
dyn, and Mesbahi (2017) and Zelazo and Bürger (2014). Necessary
and sufficient conditions for consensus in such networks with-
out inputs based on effective resistance were proposed in Chen,
Khong, and Georgiou (2016), Chen, Liu et al. (2016) and Zelazo
and Bürger (2014). To the best of our knowledge, the only work
that considers input selection in order to ensure consensus in net-
workswith negative edges is the preliminary conference version of
this paper (Clark, Hou, Bushnell, & Poovendran, 2017). Compared
to Clark et al. (2017), this paper presents tighter necessary and
sufficient conditions for consensus. The related problem of con-
trollability of signed networks was proposed in Alemzadeh et al.
(2017), but makes fundamentally different assumptions, namely
that the input nodes can follow any arbitrary state trajectory.

The performance of networked systems with input nodes, of-
ten denoted as leaders, has been studied extensively (Jadbabaie,
Lin, & Morse, 2003; Liu et al., 2011; Tanner, 2004). In particular,
prior works have proposed techniques for selecting input nodes to
optimize metrics including robustness to noise (Clark, Bushnell et

al., 2014), convergence rate (Clark, Alomair et al., 2014), and con-
trollability (Summers, Cortesi, & Lygeros, 2016), with submodular
optimization as one approach. At present, however, there are no
polynomial-time algorithms with provable guarantees for select-
ing input nodes in order to optimize the minimum eigenvalue of
networked systems.

3. Notation and preliminaries

In what follows, we give necessary background on symmetric
matrices, probability, and submodularity, and define notations that
will be used throughout the paper.

Let In denote the n× n identity matrix. We omit the subscript n
when the dimensionality of the matrix is clear for compactness of
notation. A matrix A is symmetric if A = AT , where AT denotes the
transpose of A. Any symmetric matrix can be written in the form
A = UΛUT , where U is a unitary matrix (i.e., UUT

= I) and Λ is
a real diagonal matrix. A symmetric matrix A is positive definite
if all eigenvalues are positive, or equivalently, if vTAv > 0 for all
vectors v. The notation A ≻ 0 denotes positive definiteness of A,
while A ≻ Bmeans that (A− B) is positive definite. For any matrix
A, the set of eigenvalues of A is denoted as λ1(A), . . . , λn(A), where
it is assumed that λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). We also use the
notation λmin(A) to denote the minimum eigenvalue of A. Finally,
we let D(S) denote a diagonal matrix with (D(S))ii = 1 if i ∈ S and
all other entries 0.

For an n× nmatrix A, let S ⊆ {1, . . . , n} denote a set of indices.
We let A(S) denote the submatrix formed by the rows and columns
indexed in S. Some interpretations of S and A(S) are discussed in
Section 4. The notation A(S, T ) refers to the submatrix with rows of
A indexed in S and columns indexed in T . The following theorem
describes the relationship between the eigenvalues of a matrix A
and the eigenvalues of a submatrix.

Theorem 1 (Cauchy Interlacing Theorem Horn & Johnson, 2012). Let
A be an n × n symmetric matrix and let A′ = A({1, . . . , n} \ {i}) for
some i ∈ {1, . . . , n}. Then

λ1(A) ≥ λ1(A′) ≥ λ2(A) ≥ · · · ≥ λn−1(A)
≥ λn−1(A′) ≥ λn(A).

As a corollary to Theorem 1, we have that if S ⊆ T ⊆ {1, . . . , n},
then λmin(A(S)) ≤ λmin(A(T )), or in other words, the minimum
eigenvalue λmin(S) is monotone increasing in the set S.

We now define notations and basic properties for certain ran-
dom variables. Throughout the paper, we let fZ (z) and FZ (z) denote
the probability density and distribution functions of random vari-
able Z evaluated at z ∈ R, respectively. We let E(·) denote expec-
tation, and let Pr(·) denote the probability of an event occurring.

Recall that for a Gaussian random vector z, with mean vector µ
and covariance matrix Σ , the random variable Mz for any matrix
M is Gaussian with meanMµ and covarianceMΣMT . If X1, . . . , Xr
are independent Gaussian random variables with zero mean and
unit variance, then the random variable Z = X2

1 + · · · + X2
r is

a chi-squared random variable with r degrees of freedom, with
probability density function

fZ (z) =
z

r
2−1e−

z
2

2
r
2 Γ

( r
2

)
for z > 0 and 0 otherwise, where Γ denotes the gamma function.
The mean of Z is r , while the variance of Z is 2r .

Finally, we give brief background on submodular functions. Let
V denote a finite set. A function f : 2V

→ R that takes as input a
subset of V and gives as output a real number is submodular if, for
any sets S, T ⊆ V ,

f (S)+ f (T ) ≥ f (S ∩ T )+ f (S ∪ T ).
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