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a b s t r a c t

In this paper, we develop a new approach for the observer design of switched linear systems by ergodic
theory and matrix analysis. Differently frommost current results, we formulate the admissible switching
sequences into a compact metric space and establish linear cocycles corresponding to the switched
dynamics on this metric space under the framework of dynamical system theory. The necessary and
sufficient condition for the almost surely convergent observer is given. Observer gains that minimize
the unitarily invariant norm of the error dynamics during each switching process are obtained via
pseudoinverse setting. An example is given to illustrate the proposed approach.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

A switched system consists of a family of subsystems associated
with switching dynamics among subsystems. Transition among
subsystems provides a practical modeling in many real applica-
tions, such as systems modeled for communication network, for
robot manipulations, for traffic managements, etc. (e.g., see survey
paper Liberzon &Morse, 2001, Lin & Antsaklis, 2009 and references
therein). In addition, classical stochastic Markov jump systems can
be viewed as switched systems associated with given transition
probability distributions (see, e.g., Dai, Huang, & Xiao, 2015, Zhu,
Yin, & Song, 2009 and references therein).

In this paper,we consider observer design of the switched linear
system

x(k + 1) = Aσ (k)x(k), y(k) = Cσ (k)x(k), (1)

where switchings are governed by a set of admissible mappings
σ : N → {1, 2, . . . ,N}, N ∈ N, N ≥ 2, N is the set of all natural
numbers, Aσ (k) ∈ Σ = {A1, A2, . . . , AN} ⊂ Rn×n, and the output
Cσ (k) ∈ Rm×n with m < n. Similar to classical observer design, we
construct an observer through output injection:

x̂(k + 1) = Aσ (k)x̂(k) + Kσ (k)(ŷ(k) − y(k))
ŷ(k) = Cσ (k)x̂(k).

(2)
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The system consisting of (1) and (2) is called an extended
(switched) system in literature, and all switching are among the
subsystems of the extended system. By defining x̄ = x̂ − x, the
error dynamics x̄ satisfies

x̄(k + 1) = (Aσ (k) + Kσ (k)Cσ (k))x̄(k). (3)

Let us denote Āi = Ai + KiCi, i = 1, . . . ,N , and Σ̄ = {Ā1, Ā2, . . . ,
ĀN}. The observer design for (1) with a given set of admissible
switchings is to seek Ki such that the absolute stability holds,
i.e., for any initial condition x̄(0) = x̄0 ∈ Rn, , i.e. x̄(k) → 0
as k → ∞. Differently from single systems, the study of the
stability of error dynamics for a switched system is much harder
and more challenging than the study of classical systems. The
absolute stability of the error dynamics is characterized by the
generalized spectral radius, defined as

ρ(Σ̄) = lim sup
ℓ→∞

max
{
ρ(Āi1 · · · Āiℓ )

1/ℓ
: Āis ∈ Σ̄

}
which was introduced by Daubechies and Lagarias in 1992
(Daubechies & Lagarias, 1992). If all matrices are identical, namely,
A1 = A2 = · · · = AN := A, then ρ(Σ̄) = ρ(A), where ρ(A)
is the classical spectral radius of A (the largest absolute value of
its eigenvalues). The absolute stability for the error dynamics (3)
holds if and only if the generalized spectral radius ρ(Σ̄) < 1. It
describes the maximal asymptotic growth rate of all products of
matrices taken from Σ .

It has been well-known that the generalized spectral radius
is NP-hard to compute or to approximate, even when the set Σ
consists of only two matrices and when all nonzero entries of the
matrices are assumed to be equal, and the complexity of compu-
tations grows exponentially with respect to the required accuracy
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(see, e.g., Tsitsiklis & Blondel, 1997). Moreover, the question ‘‘ρ ≤

1 ?’’ has been shown to be an undecidable problem (Blondel &
Tsitsiklis, 2000). The essential challenge to compute ρ(Σ) lies in
(i) NP-hardness, it is valid even for switched binary matrices; (ii)
undecidability, i.e., there does not exist in general any algorithm
allowing to compute a joint spectral radius in finite time; (iii)
non algebraicity, due to Kozyakin (1990), states that there is no
algebraic criterion allowing to decide the stability of a switched
linear system in general.

Many current approaches for the study of stability (as well as
stabilization) of switched systems in literature focus on the abso-
lute stability and are essentially based on the search of common
control-Lyapunov functions or variations of similar framework,
and the controlled stability usually is characterized by the exis-
tence of positive definite solutions of linear matrix inequalities
(LMIs) (e.g., see survey paper Lin & Antsaklis, 2009). The goal is to
seek a common control-Lyapunov function such that the energy
of the overall dynamics decreases to zero along all feasible state
trajectories governed by switches among subsystems (Liberzon &
Tempo, 2004). Recent development under the Lyapunov function
framework mainly includes (i) to seek the largest set of switching
sequences for which the system is absolutely stable; or (ii) to de-
termine the minimum dwell time such that a set of corresponding
stabilizing switching sequences can be identified.

Although Lyapunov method is a common approach in current
study of stability of switched systems, its drawback is obvious. It
relies on the existence of a suitable common Lyapunov function,
which usually is prior unknown and depends on an underlying
given system. There is no guarantee that such a desirable Lyapunov
function exists without imposing further restriction on the system
structure (with the help of LMIs or similar), which quite often
may lead to undesirable limitations of this type of approaches in
applications. For switched systems, absolute stability may not be
achievable even if each subsystem is asymptotically stable since
switching dynamics also plays a critical role in the system stability.
The instability can occur if the dynamics of any single admissible
switching sequence is not stable. Thus to achieve the absolute
stability usually requires quite strong assumptions on the systems
that may not be desirable. On the other hand, almost sure stabil-
ity (under appropriate probability measure) offers another option
with much less restrictions (Dai, Huang, & Xiao, 2008, 2011; Dai et
al., 2015) and is adequate in practical applications such as in the
study of stochastic processes (Zhu et al., 2009).

The challenge to obtain the absolute stability of the error dy-
namics (3) is due to even if each pair (Ai, Ci) is observable and each
ρ(Āi) < 1, the absolute stability of (3) is not guaranteed in general.
The requirement of ρ(Σ̄) < 1 is much stronger than ρ(Āi) < 1. To
see that, without loss of generality, let us assume that the matrix
set Σ̄ is irreducible, then there exists a matrix norm ∥ · ∥∗, called
extremal norm, defined on Rn×n (Dai, Huang, & Xiao, 2013), such
that

ρ(Σ̄) = max
{
∥Ā1∥∗, ∥Ā2∥∗, . . ., ∥ĀN∥∗

}
.

Hence, ρ(Σ̄) < 1 is equivalent to ∥Āi∥∗ < 1 for all i = 1, 2, . . . ,N .
The computation of the extremal norm is a forbidden task (equiv-
alently, an NP-hard problem). This explains the challenges of ab-
solute stability of switched systems: it is not only required the
eigenvalues of Āi to be inside the unit disk, but also an existing
matrix norm so that each ∥Āi∥∗ < 1. Therefore pole placement is
far more enough for the observer design of switched systems.

Motivated by our recent work (Dai et al., 2008), in this paper,
we present a method of observer design for (1) whose observer is
almost surely convergent in terms of Parry measure via symbolic
dynamical theory. Parry measure is one of Markov measures and
often used to capture the maximal set of stable processes under
the stochastic framework (see, e.g., Walters, 1982). By using the

matrix pseudoinverse, we construct the observer gain Ki and show
that the error dynamics is minimized with all unitarily invariant
norms during each switching.

The paper is organized as follows. In Section 2, we formulate the
set of switching sequences into a compact metric space, associated
with a transition probability matrix that resulted from switching
constraints. The condition of almost surely stability of error dy-
namics under an ergodic Borel probability measure is presented.
In Section 3, pseudoinverse is introduced to construct the observer
gain and we discuss the minimization under unitarily invariant
norms via matrix theory, which provides a better geometric view.
Observer design under optimal unitarily invariant norm is pre-
sented in 4. The paper ends with concluding remarks in Section
5.

2. Formulation and almost sure stability

To study the stability of error dynamics (3), for arbitrary switch-
ing, we have to consider the stability of all possible infinite ma-
trix products Āi1 Āi2 · · · Āij · · · . Each product is associated with a
(symbolic) switching sequence [i1i2 · · · ij · · · ] := [i], 1 ≤ ij ≤ N
(N ≥ 2). Let us denote the set of all possible switching sequences
by Λ = {[i] = [i1i2, . . . , iℓ, . . .], where iℓ ∈ {1, 2, . . . ,N}}, which
is a set with infinite many sequences, and denote the one-sided
shift by τ ([i]) = τ ([i1i2 · · · ij · · · ]) = [i2i3 · · · ij · · · ]. We further
introduce a mapping:

S : Λ → {Ā1, Ā2, . . . , ĀN} = Σ̄ by S([i]) = Āi1 .

Then for any given switching sequence [i], the error dynamics
(3)with observer gain Ki can bewritten as x̄(k+1) = S(τ k([i]))x̄(k),
τ 0

:= id. It is well-known that Λ (∼= {1, 2, . . . ,N}
N0 ) is a Cantor

set (Teschl, 2012), where N0 = N ∪ {0}, which implies that the
cardinality of the set of all switching sequences is the same as
the one of classical Cantor set that is uncountable. By defining
d([i], [i′]) =

∑
∞

j=1|ij−i′j|/N
j, ∀[i], [i′] ∈ Λ, (Λ, τ ) forms a symbolic

dynamical system.
In practice, quite often it is necessary to consider only certain

subsets of Λ since it is possible that only some switching may be
admissible. We define an N × N (0, 1)-matrix Γ as follows: if Aj
is allowed to follow Ai (1 ≤ i, j ≤ N) then (Γ )ij = 1 otherwise
(Γ )ij = 0. The corresponding subset of Λ is denoted by ΛΓ =

{[i] ∈ Λ | Γik,ik+1 = 1 for all k ≥ 1}. Clearly, ΛΓ is a close
subset ofΛ.Without loss of generality, assume thatΓ is irreducible
and denote the spectral radius of matrix Γ by ρ(Γ ), according
to Perron–Frobenius theorem (Horn & Johnson, 2013), there exist
two positive vectors u, v ∈ RN such that Γ v = ρ(Γ )v, uTΓ =

ρ(Γ )uT , and
∑N

i=1uivi = 1. Next we define a transition probability
matrix P = (pij) whose entries are set to be pij =

(Γ )ijvj
ρ(Γ )vi

, 1 ≤

i, j ≤ N . Denote p = [p1, p2, . . . , pN ]
T

= [u1v1, . . . , uNvN ]
T .

It is straightforward to check pTP = pT . Now one can define
τ -invariant Markov measure µ on ΛΓ (see, e.g., Walters, 1982)
as µ([i1i2, . . . , iℓ]) = pi1pi1 i2 · · · piℓ−1 iℓ , where [i1i2, . . . , iℓ] :={
(j1j2 · · · jℓ · · · ) ∈ Λ | j1 = i1, j2 = i2, . . . , jℓ = iℓ

}
is the

cylinder defined by the word (i1i2, . . . , iℓ) of length ℓ(≥ 2). By the
Kolmogorov Extension Theorem (Walters, 1982), this uniquely de-
fines ameasureµwhich is an ergodic τ -invariant Borel probability
measure on the set ΛΓ (Dai et al., 2008, 2013), and it is also called
the Parry measure of the topological Markov chain (ΛΓ , τ ). Notice
that S(τ k([i])) = S([i])S(τ ([i])) · · · S(τ k−1([i])), which is a linear
cocycle on (ΛΓ , τ ). By applying Kingman’s subadditive ergodic
theorem, for a given norm ∥ · ∥ of Rn×n, we have (see, e.g., Dai
et al., 2008) λ(µ, S) := limk→∞

1
k

∫
ΛΓ

ln ∥S(τ k([i]))∥dµ([i]) =

infk∈N 1
k

∫
ΛΓ

ln ∥S(τ k([i]))∥dµ([i]). The number λ(µ, S) is the Lya-
punov exponent of S for the ergodic system (ΛΓ , µ, τ ). According
to the multiplicative ergodic theorem (Oseledets, 1968), for µ-a.e.
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