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a b s t r a c t

The paper is devoted to distributed sampled-data control of nonlinear PDE system governed by
1-D Kuramoto–Sivashinsky equation. It is assumed that N sensors provide sampled in time spatially
distributed (either point or averaged)measurements of the state overN sampling spatial intervals. Locally
stabilizing sampled-data controllers are designed that are applied through distributed in space shape
functions and zero-order hold devices. Given upper bounds on the sampling intervals in time and in space,
sufficient conditions ensuring regional exponential stability of the closed-loop system are established in
terms of Linear Matrix Inequalities (LMIs) by using the time-delay approach to sampled-data control and
Lyapunov–Krasovskii method. As it happened in the case of diffusion equation, the descriptor method
appeared to be an efficient tool for the stability analysis of the sampled-data Kuramoto–Sivashinsky
equation. An estimate on the domain of attraction is also given. A numerical example demonstrates the
efficiency of the results.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Kuramoto–Sivashinsky equation (KSE) describes a variety of
physical and chemical phenomena including magnetized plas-
mas, flame front propagation, viscous flow problems and chemical
reaction–diffusion processes (see e.g. Kuramoto & Tsuzuki, 1975;
Sivashinsky, 1977; Lunasin & Titi, 2017). Boundary control of 1-D
KSE was studied in Coron and Lü (2015) and Liu and Krstic (2001).
The local rapid stabilization problem for a controlled KSE on a
bounded intervalwas considered in Coron and Lü (2015). In Liu and
Krstic (2001), a Neumann feedback lawwas designed to guarantee
L2-global exponential stability and H2-global asymptotic stability
for small values of the anti-diffusion parameter.

Distributed control of KSE was studied in Armaou and
Christofides (2000a, b), Christofides and Armaou (2000) and Lu-
nasin and Titi (2017). In Armaou and Christofides (2000a, b), a
finite-dimensional controller was designed on the basis of a finite-
dimensional system that captures the dominant (slow) dynamics
of the infinite-dimensional system. In Christofides and Armaou
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(2000), the problem of global exponential stabilization of the KSE
subject to periodic boundary conditions was considered. In Lu-
nasin and Titi (2017), a distributed finite-dimensional feedback
controller based on either point or averaged measurements of the
state was proposed.

For practical application of finite-dimensional controllers for
partial differential equations (PDEs), their sampled-data imple-
mentation is important. Sampled-data control of PDEs is becoming
a hot topic. Sampled-data control of KSEwas studied in Ghantasala
and El-Farra (2012), where model reduction approach was sug-
gested, and the designwas based on the finite-dimensional system
that captures the dominant dynamics. The latter approach is a
qualitative one without giving explicit bounds on the performance
(e.g. decay rate) or on the domain of attraction of the closed-loop
system.

Distributed sampled-data control of PDEs under the point or
spatially averaged measurements was suggested in Bar Am and
Fridman (2014), Fridman and Bar Am (2013) and Fridman and
Blighovsky (2012), where LMI conditions for the exponential sta-
bility and L2-gain analysis of the closed-loop systemswere derived
in the framework of time-delay approach to sampled-data control
by employing appropriate Lyapunov functionals. However, the
above results were confined to diffusion equations and to globally
Lipschitz nonlinearities, where stabilization is global. Distributed
sampled-data control of various classes of PDEs is of great interest.

In the present paper, we introduce distributed sampled-data
control of 1-D nonlinear KSE with the Dirichlet or periodic bound-
ary conditions. The sensors provide either point or averaged
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discrete-time measurements of the state. The controllers enter
KSE through distributed in space shape functions and the con-
trol signals are generated by zero-order hold devices. As for the
diffusion equation, we exploit the time-delay approach to
sampled-data control and the descriptor method for Lyapunov–
Krasovskii-based delay-dependent stability analysis (Fridman,
2001, 2014; Fridman & Orlov, 2009). In terms of LMIs, we give
regional exponential stability conditions for the sampled-data
closed-loop system and find a bound on the domain of attrac-
tion (i.e. on the set of initial conditions, starting from which the
solutions are exponentially converging). Under the correspond-
ing continuous-time controllers, we derive LMI conditions for the
global exponential stability. Some preliminary results under point
statemeasurementswill be presented in Kang and Fridman (2018).

The paper is organized as follows. Problem formulation is given
in Section 2. In Sections 3 and 4, continuous in time and sampled-
data controllers under the point or averaged state measurements
are constructed to stabilize the system. Section 5 contains a nu-
merical example to illustrate the efficiency of the main results.
Finally, some concluding remarks are presented in Section 6 and
some proofs are given in the Appendix.

Notation. L2(0, L) stands for the Hilbert space of square inte-
grable scalar functions u(x) on (0, L) with the corresponding norm
∥u∥L2 = [

∫ L
0 u2(x)dx]

1
2 . The Sobolev space Hk(0, L) is defined as

Hk(0, L) = {u : Dαu ∈ L2(0, L), ∀ 0 ≤ |α| ≤ k}

with norm ∥u∥Hk =
{∑

0≤|α|≤k∥D
αu∥2

L2
} 1

2 . Moreover,

Hk
0(0, L) = {u ∈ Hk(0, L) : u(0) = Du(0) = · · ·

= Dk−1u(0) = 0, u(L) = Du(L) = · · · = Dk−1u(L) = 0}.

2. Problem formulation and useful lemmas

We consider 1-D Kuramoto–Sivashinsky equation

ut (x, t) + uxx(x, t) + νuxxxx(x, t) + u(x, t)ux(x, t)

=

N∑
j=1

bj(x)Uj(t), 0 < x < L, t ≥ 0, (2.1)

subject to Dirichlet

u(0, t) = u(L, t) = 0, ux(0, t) = ux(L, t) = 0 (2.2)

or to periodic
∂mu
∂xm

(0, t) =
∂mu
∂xm

(L, t), m = 0, 1, 2, 3 (2.3)

boundary conditions. Here ν is a positive constant, u(x, t) is the
state of KSE, and Uj(t) ∈ R, j = 1, 2, . . . ,N are the control inputs.
Dirichlet boundary conditions were considered in Liu and Krstic
(2001), whereas the periodic ones were studied in Armaou and
Christofides (2000a, b) and Lunasin and Titi (2017). The open-loop
system (2.1) (subject to Uj(t) ≡ 0) may become unstable if ν is
small enough. Thus, for L = 2π if ν < 1 the open-loop system is
unstable (see the example below).

As in Azouani and Titi (2014), Fridman and Bar Am (2013), Frid-
man and Blighovsky (2012) and Lunasin and Titi (2017), consider
the points

0 = x0 < x1 < · · · < xN = L

that divide [0, L] into N sampling intervals Ωj = [xj−1, xj). Let

0 = t0 < t1 < · · · < tk · · · , lim
k→∞

tk = ∞

be sampling time instants. The sampling intervals in time and in
space may be variable but bounded,

0 ≤ tk+1 − tk ≤ h, 0 < xj − xj−1 = ∆j ≤ ∆,

where h and ∆ are the corresponding upper bounds. The control
inputs Uj(t) enter (2.1) through the shape functions{
bj(x) = 1, x ∈ Ωj,

bj(x) = 0, x ̸∈ Ωj,
j = 1, . . . ,N. (2.4)

Sensors provide either point

yjk = u(x̄j, tk), x̄j =
xj−1 + xj

2
, j = 1, . . . ,N,

k = 0, 1, 2 . . .
(2.5)

or averaged

yjk =

∫ xj
xj−1

u(x, tk)dx

∆j
, j = 1, . . . ,N, k = 0, 1, 2 . . . (2.6)

measurements of the state. Ourmain objective is to design for (2.1)
an exponentially stabilizing sampled-data controller that can be
implemented by zero-order hold devices:

Uj(t) = −µyjk, j = 1, . . . ,N, t ∈ [tk, tk+1), k = 0, 1, . . . , (2.7)

whereµ is a positive controller gain and yjk is given by (2.5) or (2.6).
We formulate next some useful lemmas.1

Lemma 2.1 (Poincaré Inequality Payne & Weinberger, 1960). Let
g ∈ H1(0, L) be a scalar function with

∫ L
0 g(x)dx = 0. Then∫ L

0
g2(x)dx ≤

L2

π2

∫ L

0

[
dg
dx

(x)
]2

dx.

Lemma2.2 (Wirtinger Inequality and its GeneralizationWang, 1994).
Let g ∈ H1

0 (0, L). Then the following inequality holds:∫ L

0
g2(x)dx ≤

L2

π2

∫ L

0

[
dg
dx

(x)
]2

dx.

Moreover, if g ∈ H2
0 (0, L), then∫ L

0

[
dg
dx

(x)
]2

dx ≤
L2

π2

∫ L

0

[
d2g
dx2

(x)
]2

dx.

Lemma 2.3 (Halanay’s Inequality Halanay, 1966 or p.138 of Fridman,
2014). Let 0 < δ1 < 2δ and let V1 : [t0 − h, ∞) → [0, ∞) be an
absolutely continuous function that satisfies

V̇1(t) ≤ −2δV1(t) + δ1 sup
−h≤θ≤0

V1(t + θ ), t ≥ t0.

Then

V1(t) ≤ e−2α(t−t0) sup
−h≤θ≤0

V1(t0 + θ ), t ≥ t0,

where α is a unique positive solution of

α = δ −
δ1

2
e2αh. (2.8)

3. Continuous-time global stabilization

We will start with continuous in time results, where global
stabilization can be achieved. Here the stability analysis is similar
to Lunasin and Titi (2017), but differently from Lunasin and Titi
(2017)wegive a boundon thedecay rate. Sampled-data controllers
under the point/averagedmeasurements leading to regional stabil-
ity will be presented in Section 4.

1 It should be noted that the first Wirtinger’s inequality in Lemma 2.2 is the one-
dimensional Poincaré’s inequality in Lemma 2.1 with optimal constant. This can be
easily proved by the minimization principle of the nth eigenvalue.
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