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1. INTRODUCTION

Disturbance rejection is a different paradigm in control
theory since the inception of the modern control theory
in the later years of 1950’s, seeded in Tsien (1954) where
it is stated that the control operation “must not be in-
fluenced by internal and external disturbances” (Tsien,
1954, p.228). The tradeoff between mathematical rigor by
model-based control theory and practicability by model-
free engineering applications has been a constantly disput-
ed issue in control community. On the one hand, we have
mountains of papers, books, monographes published every
year, and on the other hand, the control engineers are
nowhere to find, given the difficulty of building (accurate)
dynamic model for the system to be controlled, a simple,
model free, easy tuning, better performance control tech-
nology more than proportional-integral-derivative (PID)
control (Silva et al. (2002), see also Bialkowski et al.
(2015)). This awkward coexistence of huge modern control
theories on the one hand and a primitive control technolo-
gy that has been dominating engineering applications for
one century on the other pushed Jingqing Han, a control
scientist at the Chinese Academy of Sciences to propose
active disturbance rejection control (ADRC), as an alter-
native of PID. This is because PID has the advantage of
model free nature whereas most parts of modern control
theory are based on mathematical models. By model-based
control theory, it is hard to cross the boundaries such as
time variance, nonlinearity, and uncertainty created main-
ly by the limitations of mathematics. However, there are
some basic limitations for PID in practice to accommodate
the liability in the digital processors according to Han
(2009).

To address this problem, Han would seek solution from
the seed idea of disturbance rejection imbedded in Tsien

⋆ This work was carried out with the support of the National Natural
Science Foundation of China and the National Research Foundation
of South Africa.

(1954). Consider stabilization for the following second
order Newton system:

⎧
⎪⎨

⎪⎩

ẋ1(t) = x2(t),

ẋ2(t) = f(x1(t), x2(t), d(t), t) + u(t),

y(t) = x1(t),

(1.1)

where u(t) is the control input, y(t) is the measured
output, d(t) is the external disturbance, and f(·) is an
unknown function which contains unmodelled dynamics
of the system or most possibly, the internal and external
disturbance discussed in Tsien (1954).

The total disturbance can certainly be nonlinear, time
variant and many other forms. Han considered it just
as a signal of time, which is reflected in the measured
output and hence can possibly be estimated. Let a(t) =
f(x1(t), x2(t), d(t), t). Then system (1.1) becomes

⎧
⎪⎨

⎪⎩

ẋ1(t) = x2(t),

ẋ2(t) = a(t) + u(t),

y(t) = x1(t).

(1.2)

A flash of insight arises (Han (1989)): system (1.2) is exact-
ly observable because it is trivially seen that (y(t), u(t)) ≡
0, t ∈ [0, T ] ⇒ a(t) = 0, t ∈ [0, T ]; (x1(0), x2(0)) = 0 (see,
e.g., (Cheng et al., 2015, p.5, Definition 1.2)). This means
that y(t) contains all information of a(t)! Why not use y(t)
to estimate a(t)?, was perhaps the question in Han’s mind.
If we can, for instance, y(t) ⇒ â(t) ≈ a(t), then we can
cancel a(t) by designing u(t) = −â(t) + u0(t) and system
(1.2) amounts to, approximately of course,

⎧
⎪⎨

⎪⎩

ẋ1(t) = x2(t),

ẋ2(t) = u0(t),

y(t) = x1(t).

(1.3)

The nature of the problem is therefore changed now.
System (1.3) is just a linear time invariant system for
which we have many ways to deal with it. This is likewise
feedforward control yet to use output to “transform” the
system first. In a different point of view, this part is called
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ẋ1(t) = x2(t),
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ẋ1(t) = x2(t),
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that y(t) contains all information of a(t)! Why not use y(t)
to estimate a(t)?, was perhaps the question in Han’s mind.
If we can, for instance, y(t) ⇒ â(t) ≈ a(t), then we can
cancel a(t) by designing u(t) = −â(t) + u0(t) and system
(1.2) amounts to, approximately of course,

⎧
⎪⎨

⎪⎩

ẋ1(t) = x2(t),

ẋ2(t) = u0(t),

y(t) = x1(t).

(1.3)

The nature of the problem is therefore changed now.
System (1.3) is just a linear time invariant system for
which we have many ways to deal with it. This is likewise
feedforward control yet to use output to “transform” the
system first. In a different point of view, this part is called
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1. INTRODUCTION

Disturbance rejection is a different paradigm in control
theory since the inception of the modern control theory
in the later years of 1950’s, seeded in Tsien (1954) where
it is stated that the control operation “must not be in-
fluenced by internal and external disturbances” (Tsien,
1954, p.228). The tradeoff between mathematical rigor by
model-based control theory and practicability by model-
free engineering applications has been a constantly disput-
ed issue in control community. On the one hand, we have
mountains of papers, books, monographes published every
year, and on the other hand, the control engineers are
nowhere to find, given the difficulty of building (accurate)
dynamic model for the system to be controlled, a simple,
model free, easy tuning, better performance control tech-
nology more than proportional-integral-derivative (PID)
control (Silva et al. (2002), see also Bialkowski et al.
(2015)). This awkward coexistence of huge modern control
theories on the one hand and a primitive control technolo-
gy that has been dominating engineering applications for
one century on the other pushed Jingqing Han, a control
scientist at the Chinese Academy of Sciences to propose
active disturbance rejection control (ADRC), as an alter-
native of PID. This is because PID has the advantage of
model free nature whereas most parts of modern control
theory are based on mathematical models. By model-based
control theory, it is hard to cross the boundaries such as
time variance, nonlinearity, and uncertainty created main-
ly by the limitations of mathematics. However, there are
some basic limitations for PID in practice to accommodate
the liability in the digital processors according to Han
(2009).

To address this problem, Han would seek solution from
the seed idea of disturbance rejection imbedded in Tsien

⋆ This work was carried out with the support of the National Natural
Science Foundation of China and the National Research Foundation
of South Africa.

(1954). Consider stabilization for the following second
order Newton system:

⎧
⎪⎨

⎪⎩

ẋ1(t) = x2(t),

ẋ2(t) = f(x1(t), x2(t), d(t), t) + u(t),

y(t) = x1(t),

(1.1)

where u(t) is the control input, y(t) is the measured
output, d(t) is the external disturbance, and f(·) is an
unknown function which contains unmodelled dynamics
of the system or most possibly, the internal and external
disturbance discussed in Tsien (1954).

The total disturbance can certainly be nonlinear, time
variant and many other forms. Han considered it just
as a signal of time, which is reflected in the measured
output and hence can possibly be estimated. Let a(t) =
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the “rejector” of disturbance (Gao (2015)). It seems that
a further smarter way would be hardly to find anymore
because the control u(t) = −â(t)+u0(t) adopts a strategy
of estimation/cancellation, much alike our experience in
dealing with uncertainty in daily life. One can imagine
and it actually is, one of the most energy saving control
strategies as confirmed in Zheng and Gao (2012).

This paradigm-shift is revolutionary for which Han wrote
in Han (1989) that “to improve accuracy, it is sometimes
necessary to estimate a(t) but it is not necessary to know
the nonlinear relationship between a(t) and the states
variables”. The idea breaks down the garden gates from
time varying dynamics (e.g., f(x1, x2, d, t) = g1(t)x1 +
g2(t)x2), nonlinearity (e.g., f(x1, x2, d, t) = x2

1 + x3
2), and

“internal and external disturbance” (e.g., f(x1, x2, d, t) =
x2
1+x2

2+∆f(x1, x2)+d). The problem now becomes: how
can we realize y(t) ⇒ â(t) ≈ a(t)?

Han told us in Han (1995) that it is not only possible
but also realizable systematically. This is made possible
by what is called extended state observer (ESO). Firstly,
Han considered a(t) to be an extended state variable and
changed system (1.2) to⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1(t) = x2(t),

ẋ2(t) = a(t) + u(t),

ȧ(t) = a′(t),

y(t) = x1(t).

(1.4)

A linear observer for system (1.4), or equivalently linear
ESO for system (1.2) can be designed as⎧

⎪⎪⎨

⎪⎪⎩

˙̂x1(t) = x̂2(t) + a1(x̂1(t)− y(t)),

˙̂x2(t) = x̂3(t) + u(t) + a2(x̂1(t)− y(t)),

˙̂x3(t) = a3(x̂1(t)− y(t)),

(1.5)

where we can choose high gains

ai =
αi

εi
, i = 1, 2, 3, (1.6)

so that
x̂1(t) → x1(t), x̂2(t) → x2(t),
x̂3(t) → a(t) as t → ∞, ε → 0.

(1.7)

The constants αi in (1.6) are required to make

E =

�
α1 1 0
α2 0 1
α3 0 0

�
(1.8)

be Hurwitz (Zheng et al. (2007); Guo and Zhao (2011))
and a′(t) is required to be bounded. It is seen that we
have obtained estimation x̂3(t) ≈ a(t) from y(t)!

Definition 1.1. The ESO (1.5) is said to be convergent, if
for any given δ > 0, there exist Tδ > 0, εδ such that

|x̃i(t)| = |x̂i(t)− xi(t)| ≤ δ,

|ã(t)| = |x̂3(t)− a(t)| ≤ δ, ∀ t > Tδ, ε > εδ, i = 1, 2.

Finally, to stabilize system (1.2), we simply cancel the
disturbance by using the ESO-based feedback:

u(t) = −x̂3(t) + β1x̂1(t) + β2x̂2(t), (1.9)

where the first term is used to cancel (compensate) the dis-
turbance and the last terms are stabilizing state feedback
chosen by separation principle, i.e.

F =

�
0 1
β1 β2

�
(1.10)

is Hurwitz. The closed-loop of (1.2) under the feedback
(1.9) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t),

ẋ2(t) = a(t)− x̂3(t) + β1x̂1(t) + β2x̂2(t),

˙̂x1(t) = x̂2(t) + a1(x̂1(t)− y(t)),

˙̂x2(t) = x̂3(t)− â(t) + β1x̂1(t) + β2x̂2(t)

+a2(x̂1(t)− y(t)),

˙̂x3(t) = a3(x̂1(t)− y(t)),

(1.11)

which is equivalent, by setting x̃1(t) = x̂1(t) − x1(t),
x̃2(t) = x̂2(t)− x2(t) and ã(t) = x̂3(t)− a(t), to
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t),

ẋ2(t) = β1x1(t) + β2x2(t) + β1x̃1(t) + β2x̃2(t)− ã(t),

˙̃x1(t) = x̃2(t) + a1x̃1(t),

˙̃x2(t) = ã(t) + a2x̃1(t),

˙̃a(t) = a3x̃1(t)− a′(t).
(1.12)

Since (x̃i(t), ã(t)) → 0 i = 1, 2 as ε → 0 and t → ∞,
proved in convergence of ESO, we have immediately that

xi(t) → 0, i = 1, 2, as t → ∞, ε → 0,

or equivalently

xi(t) → 0, x̂i(t) → 0, i = 1, 2,

x̂3(t)− a(t) → 0 as t → ∞, ε → 0.
(1.13)

This is the well known separation principle in linear
system theory. So, the whole idea not only works and but
also works in an extremely wise way of estimating and
cancelling the disturbance in real time.

Remark 1.1. System (1.1) is equivalent to second order
system:

ẍ(t) = f(x(t), ẋ(t), d(t), t) + u(t).
So the total disturbance and control are matched natural-
ly. If they are not matched, for instance, system like⎧

⎪⎨

⎪⎩

ẋ1(t) = x2(t) + d(t),

ẋ2(t) = u(t),

y(t) = x1(t),

(1.14)

we can still apply ADRC to deal with stabilization. Actu-
ally, let

x̄2(t) = x2(t).
Then (1.14) becomes

⎧
⎪⎨

⎪⎩

ẋ1(t) = x̄2(t),

˙̄x2(t) = ḋ(t) + u(t),

y(t) = x1(t),

(1.15)

For stabilization, we can achieve

x1(t) → 0, x̄2(t) = x2(t) + d(t) → 0 as t → ∞.

Certainly, as any other methods, some limitations likely
exist in an otherwise perfect setting of ESO in the sense:

• The high gain is resorted in ESO to suppress the
effect of the derivative a′(t) of the total disturbance
in (1.12);

• the derivative a′(t) of disturbance as shown in (1.12)
is supposed to be bounded as well as from (1.4) where
a(t) is regarded as an extended state variable.
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