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a b s t r a c t

Themain contribution of this paper is a general synthesismethodology of exponentially stabilising control
laws for a class of boundary control systems in port-Hamiltonian form that are dissipativewith respect to a
quadratic supply rate, being the total energy the storage function.More precisely, general conditions that a
linear regulator has to satisfy to have, at first, a well-posed and, secondly, an exponentially stable closed-
loop system are presented. The methodology is illustrated with reference to two specific stabilisation
scenarios, namelywhen the (distributed parameter) plant is in impedance or in scattering form.Moreover,
it is also shown how these techniques can be employed in the analysis of more general systems that
are described by coupled partial and ordinary differential equations. In particular, the repetitive control
scheme is studied, and conditions on the (finite dimensional) linear plant to have asymptotic tracking of
generic periodic reference signals are determined.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Port-Hamiltonian systems (Maschke & van der Schaft, 1992)
have been introduced to model lumped parameter physical sys-
tems in a unified manner, van der Schaft and Jeltsema (2014),
and their generalisation to the infinite dimensional scenario led
to the definition of distributed port-Hamiltonian systems (van
der Schaft & Maschke, 2002), that turned out to be an effective
framework for describing distributed parameter physical systems
as boundary control systems (BCS) (Fattorini, 1968), i.e. as abstract
systems whose dynamic is written in terms of a partial differen-
tial equation (PDE) with control and observation at the boundary
of the domain. This paper aims at providing a general synthe-
sis methodology of exponentially stabilising control laws for the
class of linear BCS in port-Hamiltonian form extensively studied
in Jacob and Zwart (2012) and Le Gorrec, Zwart, and Maschke
(2005). In Le Gorrec et al. (2005), all the admissible inputs that
let us to define a well-posed BCS are presented, together with a
second similar parametrisation that characterises the (boundary)
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outputs. The distributed port-Hamiltonian system turns out to be
dissipative (van der Schaft, 2000), with its Hamiltonian as storage
function, and quadratic supply rate. In contrast with the generality
of this result, the current researches on stabilisation techniques
for distributed port-Hamiltonian systems (see e.g.Macchelli, 2013;
Macchelli, Le Gorrec, Ramírez, & Zwart, 2017; Ramírez, Le Gorrec,
Macchelli, & Zwart, 2014; Schöberl & Siuka, 2013; Villegas, Zwart,
Le Gorrec, & Maschke, 2009), is focused on a particular input–
output mapping: the BCS has to be in impedance form, i.e. input
and output are selected so that the system is passive. Then, control
design relies on passivity theory, and the most common strategy
is to add dissipation at the boundary, and/or to shape the energy
function to shift the equilibrium.

Since the idea is to determine general stability conditions for
the class of BCS defined in Le Gorrec et al. (2005), passivity or the
port-Hamiltonian structure are no longer required by the control
system. At first, it is proved that the closed-loop system result-
ing from the feedback interconnection of a linear regulator and
a BCS in port-Hamiltonian form is again a BCS if the controller
is stable and dissipative with respect to a class of supply rates
that is determined by the input–output mapping of the infinite
dimensional plant. Moreover, the addition of dissipation makes
the closed-loop storage function to decrease exponentially, thus
implying exponential stability of the equilibrium. Thanks to these
techniques, exponential stability is then proved for a large class
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of systems whose dynamic is described by coupled PDEs and or-
dinary differential equations (ODEs). This result is an extension
of Ramírez et al. (2014), where exponential stability was proved
under the hypothesis that the regulator is a strictly input passive
port-Hamiltonian system, and that the BCS is in impedance form.
However, it is important to underline that such an extension relies
on some technical lemmas presented in Ramírez et al. (2014),
and generalised here to cope with a larger class of BCS in port-
Hamiltonian form.

The scenario that this paper defines can be summarised as
follows. For any dynamical system resulting from the feedback
interconnection of a BCS in port-Hamiltonian form Le Gorrec et al.
(2005), and a stable, linear, dissipative, finite dimensional system,
if a matrix inequality that involves the supply rates of both holds
true, then the closed-loop system is well-posed, i.e. it defines
a BCS in the sense of the semigroup theory (Curtain & Zwart,
1995, Definition 3.3.2), in which the input is the reference signal.
Moreover, if the finite dimensional system is asymptotically stable
and ‘‘enough dissipation’’ is added, then the closed-loop system is
exponentially stable. The potentialities of this approach are at first
illustrated in case the BCS is in impedance or in scattering form,
van der Schaft (2000, Chapter 4.4.3), and sufficient conditions on
the finite dimensional controller to have exponential stability in
closed-loop are provided.

To illustrate how to apply the proposed methodology to the
study of systems described by coupled PDEs and ODEs, the sta-
bility analysis of repetitive control (Hara, Yamamoto, Omata, &
Nakano, 1988) in the linear case is presented. Repetitive control is
a technique for tracking periodic exogenous signals with a known
time period T , and its main properties depend on a particular
element, the repetitive compensator, that consists of a time delay
T surrounded by a positive feedback loop: the regulator turns out
to be a distributed parameter system, while the plant is finite
dimensional. Once the repetitive compensator iswritten as a BCS in
port-Hamiltonian form,we are able to determine underwhich con-
ditions repetitive control schemes exponentially converge, thus
assuring asymptotic tracking of generic periodic reference signals.

2. Distributed port-Hamiltonian systems

We refer to the class of port-Hamiltonian systems defined on
real Hilbert spaces described by the PDE, Jacob and Zwart (2012)
and Le Gorrec et al. (2005) :
∂x
∂t

(t, z) = P1
∂

∂z

(
L(z)x(t, z)

)
+ (P0 − G0)L(z)x(t, z) (1)

with x ∈ X := L2(a, b;Rn), z ∈ [a, b], and L : [a, b] → Rn×n

a bounded and Lipschitz continuous function such that L(z) =

LT(z) > 0 for all z ∈ [a, b]. Since L is a coercive operator, X
is then endowed with the inner product ⟨x1 | x2⟩L = ⟨x1 | Lx2⟩
and norm ∥x1∥2

L = ⟨x1 | x1⟩L, where ⟨· | ·⟩ denotes the natural
L2-inner product. The selection of this space for the state variable
is motivated by the fact that ∥·∥

2
L is strongly linked to the energy

function of (1). As a consequence, X is also called the space of
energy variables, and (Lx) (t, z) := L(z)x(t, z) denote the co-
energy variables. Moreover, P1, P0 and G0 are n × n real matrices,
with P1 = PT

1 and invertible, P0 = −PT
0 , and G0 = GT

0 ≥ 0.

Remark 1. The PDE (1) can be written as ẋ = J x, where J x :=

P1 ∂
∂z (Lx) + (P0 − G0)Lx is a linear operator with domain D(J ) ={

Lx ∈ H1(a, b;Rn)
}
, being H1(a, b;Rn) the Sobolev space of order

one. Note that ⟨J x | x⟩L = − ⟨Lx | G0Lx⟩ + eT∂ f∂ ≤ eT∂ f∂ , where(
f∂
e∂

)
=

1
√
2

(
P1 −P1
I I

)
  

=:R

(
(Lx)(b)
(Lx)(a)

)
. (2)

The vectors f∂ , e∂ ∈ Rn are defined as linear combination of
the restriction of Lx ∈ H1(a, b;Rn) to the boundary. The problem
of characterising inputs and outputs for (1) in terms of f∂ and e∂

to have a BCS on X in the sense of the semigroup theory (Curtain
& Zwart, 1995, Definition 3.3.2) has been addressed in Le Gorrec
et al. (2005) when G0 = 0. The case G0 ≥ 0 is a straightforward
extension of the results presented in Le Gorrec et al. (2005), and it
is discussed in the next theorem.

Theorem 2. Let W be a full rank n × 2n real matrix, and define
B : H1(a, b;Rn) → Rn and the input u(t) as

u(t) = Bx(t) := W
(
f∂ (t)
e∂ (t)

)
, (3)

with D(B) = D(J ). The operator J̄ x := P1 ∂
∂z (Lx)+ (P0 −G0)Lx with

domain

D(J̄ ) =

{
Lx ∈ H1(a, b;Rn) |

(
f∂
e∂

)
∈ KerW

}
generates a contraction semigroup onX, seeCurtain andZwart (1995,
Definition 2.2.1), if and only if

WΣW T
≥ 0, where Σ =

(
0 I
I 0

)
and the system (1)with input (3) is a BCS on X, see Curtain and Zwart
(1995, Definition 3.3.2), provided that u ∈ C2(0, ∞;Rn). Moreover,
let W̃ be a full rank n× 2n matrix such that

(
W T W̃ T

)
is invertible,

and define the output as

y(t) = Cx(t) := W̃
(
f∂ (t)
e∂ (t)

)
, (4)

with C : H1(a, b;Rn) → Rn. Then, for (Lx)(0) ∈ H1(a, b;Rn), and
u(0) = Bx(0), the following energy-balance inequality is satisfied:

1
2

d
dt

∥x(t)∥2
L ≤

1
2

(
u(t)
y(t)

)T (W
W̃

)−T

Σ

(
W
W̃

)−1

  
=:PW ,W̃

(
u(t)
y(t)

)
. (5)

Proof. In Le Gorrec et al. (2005, Theorem 4.1), it has been proved
that the operator JW e := P1 ∂e

∂z + P0e with domain

D(JW ) =

{
e ∈ L2(a, b;Rn) | R

(
e(b)
e(a)

)
∈ KerW

}
is the infinitesimal generator of a contraction C0-semigroup
(T (t))t≥0 on X . As a consequence, see e.g. Jacob and Zwart (2012,
Theorem 10.3.1), JW −G0 with the same domain is the infinitesimal
generator of a C0-semigroup (TG(t))t≥0 on X , which is again a con-
traction because TG(t) = e−G0tT (t) and G0 = GT

0 ≥ 0. So, the first
statement of the theorem follows in the same way as in Le Gorrec
et al. (2005, Lemma 5.4) since J̄ = (JW − G0)L. The operator J̄
defines the dynamics of (1) when the input u(t) selected as in (3) is
equal to zero. Existence of solutions in the autonomous case is one
of the requirements for having a BCS in the sense of the semigroup
theory, Curtain and Zwart (1995, Definition 3.3.2). The other ones
can be checked in the same way as in steps 2 and 3 of the proof of
Le Gorrec et al. (2005, Theorem 4.2). Finally, the balance relation
(5) is a consequence of Remark 1, because 1

2
d
dt ∥x∥2

L = ⟨J x | x⟩L,
which implies that 1

2
d
dt ∥x∥2

L ≤ eT∂ f∂ , and of the definitions (3) and
(4) of u and y in terms of f∂ and e∂ .

Corollary 3. The BCS of Theorem 2 is dissipative (van der Schaft,
2000) with storage function E(x) =

1
2 ∥x∥2

L, and supply rate

s(u, y) =:
1
2

(
u
y

)T (U S
ST Y

)
  

:=PW ,W̃

(
u
y

)
, (6)



Download English Version:

https://daneshyari.com/en/article/7108291

Download Persian Version:

https://daneshyari.com/article/7108291

Daneshyari.com

https://daneshyari.com/en/article/7108291
https://daneshyari.com/article/7108291
https://daneshyari.com

