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a b s t r a c t

This paper mainly concerns the stability of the solutions for stochastic differential equations driven
by G-Brownian motion (G-SDEs) via feedback control based on discrete-time state observation. More
precisely, the discrete-time state feedback control is included in the drift coefficient of the G-SDEs. By
constructing an appropriate G-Lyapunov function, a set of conditions is obtained for the H∞ stability,
asymptotic stability andmean-square exponential stability of the controlled systems. Finally, an example
with numerical simulation is presented to illustrate the effectiveness of the proposed control design
technique.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Since Peng (see, e.g., Peng, 2007, 2008) set up the G-expectation
andG-Brownianmotion theory,many interestingworks have been
done on stochastic calculus based on G-Brownian motion due to
its powerful applications in uncertain problems, risk measures,
the superhedging in finance and so on. Under the G-framework,
stochastic differential equations driven by G-Brownian motion
(G-SDEs) were first introduced by Peng (see, e.g., Peng, 2008).
Since then, some interesting works have been reported on the
qualitative properties such as existence, uniqueness and stability
of the solutions forG-SDEs; formore details, one can see, e.g., Li, Lin,
& Lin (2016); Ren, Jia, & Sakthivel (2017) and the references therein.
Especially, Li et al. (see, e.g., Li et al., 2016) have proposed the
sufficient conditions for the exponential instability to the following
G-SDE:

dx(t) = f (t, x(t))dt + h(t, x(t))d⟨B⟩(t)
+ σ (t, x(t))dB(t), t ≥ 0. (1)
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Specifically, natural question is whether we can design a control to
make the G-SDE (1) stable.

There are many methods to make an unstable system stable.
Among them, the feedback control based on discrete-time state
observation is an efficient one, which has been used in establishing
themean-square exponential stabilization for a class of continuous
time hybrid stochastic differential equations driven by Brownian
motion (see, e.g., Mao, 2016). Since then, many authors have
discussed the stability for different kinds of stochastic dynamical
systems (see, e.g., Hu & Mao, 2008; Mao, 2013, 2016; Mao, Lam,
& Huang, 2008; Mao, Liu, Hu, Luo, & Lu, 2014; Mao, Yin, & Yuan,
2007; Qiu, Liu, Hu, & Lu, 2016; Qiu, Liu, Hu, Mao, & You, 2016;
Shao, 2017; You, Liu, Liu, Mao, & Qiu, 2015). In particular, for an
unstable stochastic system, it is necessary and important to design
a feedback control with the form u(t, x([t/τ ])) embedded into the
drift part, where [t/τ ] is the integer part of t/τ , where τ is the
discrete-time observation gap.

Motivated by the aforementioned works, it is necessary to de-
velop a controller which can make G-SDEs (1) stable. The main
aim of this work is to find a feedback control based on discrete-
time state observation u(t, x([t/τ ]τ )) embedded into the drift co-
efficient, so that the controlled system

dx(t) = [f (t, x(t)) + u(t, x([t/τ ]τ ))]dt + h(t, x(t))d⟨B⟩(t)
+ σ (t, x(t))dB(t), t ≥ 0 (2)

becomes stable. In particular, theH∞ stability, asymptotic stability
andmean-square exponential stability of the controlled systemare
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obtained by means of G-Lyapunov function. The main contribu-
tions of this paper are summarized as follows:

• In this work, an unstable stochastic differential equation
driven by G-Brownianmotion is stabilized via feedback con-
trol based on discrete-time state observation.

• By constructing an appropriateG-Lyapunov function, a set of
conditions can be derived for obtaining the required result.

• The result reveals that the designed controller makes the
unstable system as a stable one with an adequate level of
discrete-time observation gap.

In the last section, an example is proposed to illustrate the obtained
results.

2. Problem formulation and preliminaries

In this section, we consider an n-dimensional controlled system
in the following form:

dx(t) = [f (t, x(t)) + u(t, x(δt ))]dt + h(t, x(t))d⟨B⟩(t)
+ σ (t, x(t))dB(t), t ≥ 0 (3)

with initial data x(0) = x0 ∈ Rn, where B(·) is a one dimensional
G-Brownian motion, ⟨B⟩(·) is the quadratic variation process of the
G-Brownian motion B(·). Here

f , h, σ : R+
× Rn

→ Rn and f , h, σ ∈ M2
G(0, T ),

while τ > 0 and δt = [t/τ ]τ , where [t/τ ] is the integer part of
t/τ , τ is the discrete-time observation gap.

Noted that system (3) is in fact a G-SDEwith a bounded variable
delay ζ : [0, ∞) → [0, τ ] by

ζ (t) = t − lτ for lτ ≤ t < (l + 1)τ , l = 0, 1, 2, . . . .

Then, the system (3) can be rewritten as

dx(t) = [f (t, x(t)) + u(t, x(t − ζ (t)))]dt
+ h(t, x(t))d⟨B⟩(t) + σ (t, x(t))dB(t). (4)

It can be easily seen that Eq. (4) has a unique solution x(t) for
any initial value x0. For stability analysis, it is assumed that x0 =

0, f (t, 0) = 0, h(t, 0) = 0, σ (t, 0) = 0, u(t, 0) = 0 for all t ≥ 0,
then system (3) admits a trivial solution x(t) ≡ 0.

Let C1,2(R+
×Rn

; R+) be the family of all nonnegative functions
V (t, x) on R+

× Rn, which once differentiable are continuous in t
and twice differentiable in x. If V ∈ C1,2(R+

× Rn
; R+), then define

an operator LV by

LV (t, x) := Vt (t, x) + Vx(t, x)[f (t, x) + u(t, x)]
+G(⟨Vx(t, x), 2h(t, x)⟩
+ ⟨Vxx(t, x)σ (t, x), σ (t, x)⟩),

where Vt (t, x) =
∂V (t,x)

∂t , Vx(t, x) =

(
∂V (t,x)

∂x1
,

∂V (t,x)
∂x2

, . . . ,
∂V (t,x)

∂xn

)
,

Vxx(t, x) =

(
∂2V (t,x)
∂xi∂xj

)
n×n

.

In order to stabilize the system (1), we impose the following
assumptions.

Assumption 1. Suppose that the functions f , h and g are continu-
ous and satisfy the following linear growth condition:

|f (t, x)| ≤ L1|x|, |h(t, x)| ≤ L2|x|, |σ (t, x)| ≤ L3|x|, (5)

for all (t, x) ∈ R+
× Rn, where L1, L2 and L3 are positive constants.

Assumption 2. Suppose that the controller function u : R+
×Rn

→

Rn is globally Lipschitz continuous such that

|u(t, x) − u(t, y)| ≤ L4|x − y|,

where L4 is a positive constant.

Assumption 3. Suppose that there exist two positive numbers
λ1, λ2 such that LV (t, x) + λ1|Vx(t, x)|2 ≤ −λ2|x|2 for all (t, x) ∈

R+
× Rn.

In this paper, we construct a G-Lyapunov functional on the
segment xt := {x(t + r) : −τ ≤ r ≤ 0} for t ≥ 0. For xt to be
well defined for 0 ≤ t ≤ τ , we set x(r) = x0 for −τ ≤ r ≤ 0. Let

V̄ (t, xt ) = V (t, x(t)) + θ

∫ t

t−τ

∫ t

r
[τ |f (v, x(v))

+ u(v, x(δv))|2 + σ̄ 4τ |h(v, x(v))|2

+ σ̄ 2
|σ (v, x(v))|2]dvdr, t ≥ 0, (6)

where θ is a positive constant to be determined later. Applying the
G-Itô formula to V̄ (t, xt ), we have

dV̄ (t, xt ) = LV̄ (t, xt )dt + dMt , (7)

where Mt is a G-martingale. Moreover,

LV̄ (t, xt ) = Vt (t, x(t)) + Vx(t, x(t))[f (t, x(t))
+ u(t, x(δt ))] + G(⟨Vx(t, x(t)), 2h(t, x(t))⟩
+ ⟨Vxx(t, x(t))σ (t, x(t)), σ (t, x(t))⟩)

+ θτ
[
τ |f (t, x(t)) + u(t, x(δt ))|2

+ σ̄ 4τ |h(t, x(t))|2 + σ̄ 2
|σ (t, x(t))|2

]
− θ

∫ t

t−τ

[τ |f (r, x(r)) + u(r, x(δr ))|2

+ σ̄ 4τ |h(r, x(r))|2 + σ̄ 2
|σ (r, x(r))|2]dr. (8)

Applying G-Itô formula to V (t, x(t)), we have

dV (t, x(t)) = (Vt (t, x(t)) + Vx(t, x(t))[f (t, x(t))
+ u(t, x(δt ))])dt + G(⟨Vx(t, x(t)), 2h(t, x(t))⟩
+ ⟨Vxx(t, x(t))σ (t, x(t)), σ (t, x(t))⟩) + dMt .

Applying the fundamental theory ofmathematical analysis,we get

d
(∫ t

t−τ

∫ t

r
θ [τ |f (v, x(v)) + u(v, x(δv))|2+

σ̄ 4τ |h(v, x(v))|2 + σ̄ 2
|σ (v, x(v))|2]dvdr

)
=

(
θτ

[
τ |f (t, x(t)) + u(t, x(δt ))|2 + σ̄ 4τ |h(t, x(t))|2

+ σ̄ 2
|σ (t, x(t))|2

]
− θ

∫ t

t−τ

[τ |f (r, x(r)) + u(r, x(δr ))|2

+ σ̄ 4τ |h(r, x(r))|2 + σ̄ 2
|σ (r, x(r))|2]dr

)
dt.

Consequently, (8) holds. For some basic notations about
G-Brownian motion, lemmas and definitions, one can refer the
papers (Peng, 2007, 2010).

Definition 1. For any ηt ∈ M1,0
G (0, T ), ⟨B⟩(t) is the quadratic

variation process of B(t), define∫ T

0
ηtd⟨B⟩(t) :=

N−1∑
j=0

ξj
(
⟨B⟩(tj+1) − ⟨B⟩(tj)

)
,

where ⟨B⟩(t) := limN→∞

∑N−1
j=0

(
B(tNj+1) − B(tNj )

)2
= B2(t) −

2
∫ t
0 B(s)dB(s).

Proposition 1 (Peng, 2007). For all ηt ∈ M2
G(0, T ), we have Ê(∫ T

0 ηtdB(t)
)

= 0 and Ê
(∫ T

0 ηtdB(t)
)2

= Ê
(∫ T

0 η2
t d⟨B⟩(t)

)
≤ σ̄ 2Ê(∫ T

0 η2
t dt

)
.
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