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a b s t r a c t

We derive and analyze optimal control strategies for a system of pursuit and evasion with a single speed-
limited pursuer, and multiple heterogeneous evaders with limits on speed, angular turning rate, and
lateral acceleration. The goal of the pursuer is to capture a single evader in the minimum time possible,
and the goal of each evader is to avoid capture if possible, or else delay capture for as long as possible.
Optimal strategies are derived for the one-on-one differential game, and these form the basis of strategies
for the multiple-evader system. We propose a pursuer strategy of optimal target selection which leads to
capture in bounded time. For evaders, we prove how any evader not initially targeted can avoid capture.
We also consider optimal strategies for agentswith radius-limited sensing capabilities, proving conditions
for evader capture avoidance through a local strategy of risk reduction. We show how evaders aggregate
in response to a pursuer, much like animals behave in the wild.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

We consider a system with a single pursuer and multiple het-
erogeneous evader agents moving on the plane. The goal of the
pursuer is to capture any single evader in the minimum time
possible. The goal of each evader is to first of all avoid capture, and
if that is not achievable to delay capture for as long as possible.
The pursuer has limited speed, and the evaders have limits on
speed, angular turning rate, and lateral acceleration. To analyze this
system we apply the framework of differential games introduced
by Isaacs (1965) and used to study pursuit and evasion, e.g., Başar
and Oldser (1999), Elliott and Kalton (1972) and Pachter (1987).
We examine optimal strategies for the one-on-one pursuit-evasion
differential game under these motion constraints, and use those as
building blocks for strategies in the system of multiple evaders.

In the multiple-evader system, we propose a strategy for the
pursuer of optimal target selection, where the target is the evader
that could be captured in minimum time in a one-on-one setting.
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For evaders, in the case of all-to-all sensing, we prove that any
evader not currently the target can always choose from a set
of reactive evasion control inputs in order to avoid capture. The
currently targeted evader must use the optimal evasive strategy
from the one-on-one game to delay its capture for as long as possi-
ble. We also consider the case in which the pursuer and evaders
have radius-limited sensing and propose a local strategy of risk
reduction. We prove that any evader that is not the target can avoid
capture using the risk reduction strategy. The case with no con-
straint on turning rate is addressed in Scott and Leonard (2014).

Predator avoidance has long been considered a key factor in
animal aggregation. The ‘‘selfish herd’’ of Hamilton (1971) is a
seminal model of identical evaders on the plane. Hamilton showed
that a group benefit is not necessary to explain aggregation; rather,
a self-interested individual in a population stays close to others to
reduce its own chance of being caught. We also consider a group of
self-interested evaders, but we use continuous-time dynamics and
heterogeneous evaders. We are also motivated by the problem of
designing dynamics for group formation in engineeredmulti-agent
systems. Our decentralized control law for a collective response
to a moving threat accounts for practical motion constraints and
provides a control mechanism for spontaneous aggregation.

Hamilton’s model has been extended to include evolutionary
dynamics and formation of large groups (Wood & Ackland, 2007).
Numerical studies have examined properties of group motion in
multiple-evader systemswhere biologically inspired strategies are
chosen a priori: on the plane (Lee, Pak, & Chon, 2006), in discrete
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space (Vabø & Nøttestad, 1997), in three dimensions (Vabø &
Skaret, 2008), with multiple pursuers (Angelani, 2012), and based
on observations of crabs and shorebirds (Viscido,Miller, &Wethey,
2001). Non-spatially explicit game theoretic models of multiple-
evader systems have been posed for both homogeneous evaders
(Cressman & Garay, 2011), and heterogeneous evaders (Eshel,
Sansone, & Shaked, 2006).

Cooperative evader strategies have been studied as differen-
tial games in systems where all evaders are captured in succes-
sion (Liu, Zhou, Tomlin, & Hedrick, 2013a, b), and in systems
where evaders have defensive capabilities (Fuchs & Khargonekar,
2011). The problem of choosing the order in which to capture
multiple evaders requires numerical optimization or approximate
solutions for efficient computation. Because every evader will be
captured and strategies are cooperative, evaders are driven apart
rather than into aggregations, fundamentally different from the
problem posed by Hamilton and studied in the present paper.
Multiple pursuers against a single evader have been studied in
many contexts (Bakolas, 2013; Bakolas & Tsiotras, 2010; Chen, Zha,
Peng, & Gu, 2016; Selvakumar & Bakolas, 2016; Zhou et al., 2016),
using tools such as generalized Voronoi diagrams. Oyler, Kabamba,
and Girard (2016) analyzed a pursuit-evasion game on the plane
in the presence of obstacles, using a time-to-reach partition to
determine if two evaders can rendezvous with each other before
capture by a single pursuer. Bakolas and Tsiotras (2012) considered
a multi-pursuer system where the active pursuer is whoever can
capture the single evader in minimum time. This is dual to the
optimal target selection problem for the multiple-evader system.

We use a time-to-capture metric based on the solution to a
one-on-one differential game to partition the plane into evader
domains of danger in a multiple-evader system. The partition is
useful both in the analysis of the pursuer strategy of optimal target
selection, where the pursuer chooses its target based on which
domain of danger it is in, and in each evader’s strategy of reactive
evasion to keep the pursuer from entering its own domain of
danger.

Our analysis considers an ‘‘omnidirectional’’ pursuer with lim-
ited speed seeking to capture any single evader from a group of
heterogeneous and non-cooperating evaders with limits on speed,
angular turning rate, and lateral acceleration, motivated from
legged locomotion. A study of the kinematics of horses during polo
games (Tan & Wilson, 2011) indicates that grip strength and limb
force limits constrain the maximum lateral acceleration during a
turn. In the evader motion model, the limit on lateral acceleration
serves to create a tradeoff between speed and maneuverability, as
the agent cannot make a sharp turn while maintaining maximum
speed.

Several recent papers examine differential games featuring
steered agents with turning constraints, such as a differential-
drive agent vs. an omnidirectional agent, each acting as pursuer
and evader (Ruiz & Murrieta-Cid, 2016), and an omnidirectional
pursuer vs. a car-like evader (Exarchos, Tsiotras, & Pachter, 2015).
These types of dynamics have also been studied in minimum-time
problems for a single agent, for the fixed-speed Reeds-Shepp vehi-
cle (Sussmann & Tang, 1991), for a differential-drive vehicle with
limited wheel speed (Balkcom & Mason, 2002), and in our own
work on an agent with limited speed, turning rate, and lateral ac-
celeration (Scott & Leonard, 2018). A biologically inspired analysis
of pursuit and evasion with acceleration constraints by Howland
(1974) suggests that a more agile but slower evader can escape
from a fast pursuer with limited lateral acceleration by veering to
the side at the lastmoment. Studies of evasive behavior in different
animal species are reviewed in Domenici and Ruxton (2015).

Our major contributions are threefold. First, we prove an op-
timal strategy for a pursuer that seeks to capture, in minimum
time, any single evader among multiple heterogeneous evaders

moving in the plane with limits on speed, angular turning rate,
and lateral acceleration. The strategy relies on the optimal solution
to the corresponding one-on-one differential game, which is new
relative to the literature due to the constraints imposed on the
evader’s motion. For the multiple-evader system, the pursuer will
target one evader at a time butwill switch to target another evader
if and when the pursuer estimates that the other evader can be
caught in the shortest time remaining. Second, we prove a reactive
evasive strategy for each non-targeted evader that keeps it from
becoming the target. The evasion strategies do not require cooper-
ation and each non-targeted evader can stay close to the group and
conserve energy while still avoiding capture. Third, we generalize
our results to the system in which the pursuer and each evader
has a limited sensing region. In this case, before using reactive
evasion, each non-targeted evader responds with a risk reduction
phase to decrease its chances of becoming the target. We show
how each non-targeted evader will move closer to another with a
lower speed limit, thus providing a distributed control mechanism
for aggregation.

We define the problem and system equations in Section 2. In
Section 3 we derive optimal trajectories and an evader feedback-
control law for the one-on-one differential game with motion
constraints. In Section 4 we prove the optimal strategies for the
multiple-evader system. We introduce limits on sensing radius
in Section 5 and examine evader risk reduction. We conclude in
Section 6.

2. Problem statement and equations of motion

We consider a system on the plane with a single pursuer agent
P and a heterogeneous group of n evader agents Ei. The pursuer P
is modeled as an agent that can freely move in any direction with
maximum speed v̄p, position rp(t) ∈ R2 at time t , and velocity
control input up(t) = (vxp (t), vyp (t))

T
∈ R2 with ∥up(t)∥2 ≤ v̄p

for all t . Evaders are modeled as steered agents with inputs of
speed vi(t) ∈ R and turning rate ωi(t) ∈ R, written as ui(t) =

(vi(t), ωi(t))T . An evader’s state at time t is its position ri(t) ∈ R2

and its heading angle θi(t) ∈ S1.
For each evader agent Ei, we impose the following motion

constraints:

• Forward motion: Speed must satisfy vi(t) ≥ 0 for all time t ,
such that the agent never moves in reverse.

• Limited speed: Let v̄i > 0 be the maximum speed. The speed
control must satisfy vi(t) ≤ v̄i for all time t .

• Limited turning rate: Let ω̄i > 0 be the maximum turning
rate. The turning control must satisfy |ωi(t)| ≤ ω̄i for all
time t .

• Limited lateral acceleration: Let µi represent the maximum
lateral acceleration (turning traction limit). The inputs vi(t)
and ωi(t) must satisfy |vi(t)ωi(t)| ≤ µi for all time t .
We further impose the condition that µi < v̄i ω̄i so that
the lateral acceleration constraint is active on part of the
boundary of the control domain.

We define the evader admissible control region Ωei = {u =

(v, ω) ∈ R2
| 0 ≤ v ≤ v̄i, |ω| ≤ ω̄i, |vω| ≤ µi < v̄iω̄i} and

the pursuer admissible control region Ωp = {up ∈ R2
| ∥up∥2 ≤

v̄p}. Admissible controls Ui for evader Ei are bounded Lebesgue
measurable functions from R+ toΩei and Up for the pursuer from
R+ toΩp.

The system equations of motion are

ṙp = up, up ∈ Up

ṙi =

(
vi cos θi
vi sin θi

)
, (vi, ωi) ∈ Uei

θ̇i = ωi, for i = 1, 2, . . . , n. (1)
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