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This article investigates the problem of enforcing a virtual holonomic constraint (VHC) on a mechanical
system with degree of underactuation one while simultaneously stabilizing a closed orbit on the con-
straint manifold. This problem, which to date is open, arises when designing controllers to induce complex
repetitive motions in robots. In this paper, we propose a solution which relies on the parameterization
of the VHC by the output of a double integrator. While the original control inputs are used to enforce
the VHC, the control input of the double-integrator is designed to asymptotically stabilize the closed
orbit and make the state of the double-integrator converge to zero. The proposed design is applied to
the problem of making a PVTOL aircraft follow a circle on the vertical plane with a desired speed profile,
while guaranteeing that the aircraft does not roll over for suitable initial conditions.

© 2018 Elsevier Ltd. All rights reserved.

Virtual holonomic constraints (VHCs) have been recognized to
be key to solving complex motion control problems in robotics.
There is an increasing body of evidence from bipedal robotics (Griz-
zle, Abba, & Plestan, 2001; Grizzle, Chevallereau, Sinnet, & Ames,
2014; Westervelt, Grizzle, Chevallereau, Choi, & Morris, 2007),
snake robot locomotion (Mohammadi, Rezapour, Maggiore, & Pet-
tersen, 2016), and repetitive motion planning (Ahmed, Hably, &
Bacha, 2013; Shiriaev, Freidovich, Robertsson, Johansson, & Sand-
berg, 2007) that VHCs constitute a new motion control paradigm,
an alternative to the traditional reference tracking framework.
The key difference with the standard motion control paradigm
of robotics is that, in the VHC framework, the desired motion is
parametrized by the states of the mechanical system, rather than
by time.

Geometrically, a VHC is a subset! of the configuration manifold
of the mechanical system. Enforcing a VHC means stabilizing the
subset of the state space of the mechanical system where the
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generalized coordinates of the mechanical system satisfy the VHC,
while the generalized velocity is tangent to the VHC. This subset is
called the constraint manifold.

Grizzle and collaborators (see, e.g., Westervelt et al., 2007) have
shown that the enforcement of certain VHCs on a biped robot leads,
under certain conditions, to the orbital stabilization of a hybrid
closed orbit corresponding to a repetitive walking gait. The orbit
in question lies on the constraint manifold, and the mechanism
stabilizing it is the dissipation of energy that occurs when a foot
impacts the ground. In a mechanical system without impacts, this
stabilization mechanism disappears, and the enforcement of the
VHC alone is insufficient to achieve the ultimate objective of stabi-
lizing a repetitive motion. Some researchers (Shiriaev, Freidovich,
& Gusev, 2010; Shiriaev, Perram, & Canudas-de-Wit, 2005) have
addressed this problem by using the VHC exclusively for motion
planning, i.e., to find a desired closed orbit. Once a suitable closed
orbit is found, a time-varying controller is designed by linearizing
the control system along the orbit. In this approach, the constraint
manifold is not an invariant set for the closed-loop system, and
thus the VHC is not enforced via feedback.

To the best of our knowledge, for mechanical control systems
with degree of underactuation one, the problem of simultaneous
enforcement of a VHC and orbital stabilization of a closed orbit
lying on the constraint manifold is still open. The challenge in ad-
dressing this problem lies in the fact that the dynamics of the me-
chanical control system on the constraint manifold are unforced.
Therefore, any feedback that asymptotically stabilizes the desired
closed orbit cannot render the constraint manifold invariant, and
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thus cannot enforce the VHC. To overcome this difficulty, in this
paper we propose to render the VHC dynamic. By doing that, under
suitable assumptions it is possible to stabilize the desired closed
orbit while simultaneously enforcing the dynamic VHC.

Contributions of the paper. This paper presents the first solu-
tion of the simultaneous stabilization problem just described for
mechanical control systems with degree of underactuation one.
Leveraging recent results in Mohammadi, Maggiore, and Consolini
(2017), we consider VHCs that induce Lagrangian constrained dy-
namics. The closed orbits on the constraint manifold are level
sets of a “virtual” energy function. We make the VHC dynamic
by parametrizing it by the output of a double-integrator. We use
the original control inputs of the mechanical system to stabilize
the constraint manifold associated with the dynamic VHC, and
we use the double-integrator input to asymptotically stabilize the
selected orbit on the constraint manifold. Because the output of the
double-integrator acts as a perturbation of the original constraint
manifold, we also make sure that the state of the double-integrator
converges to zero. To achieve these objectives, we develop a novel
theoretical result giving necessary and sufficient conditions for
the exponential stabilizability of closed orbits for control-affine
systems.

The benefits associated with the simultaneous stabilization pro-
posed in this paper are as follows. First, in the proposed framework
one may assign the speed of convergence of solutions to the con-
straint manifold independently of the orbit stabilization mecha-
nism. In particular, one may enforce the dynamic VHC arbitrarily
fast,> so that after a short transient, the qualitative behaviour
of trajectories of the closed-loop system is determined by the
dynamic VHC. Second, since the constraint manifold is asymptot-
ically stable for the closed-loop system, trajectories originating
near the constraint manifold remain close to it thereafter. From a
practical standpoint, the two features just highlighted mean that
the dynamic VHC offers some control over the transient behaviour
of the closed-loop system. The simultaneous stabilization of the
closed orbit means that, without violating the dynamic VHC, an
extra stabilization mechanism makes the trajectories of the closed-
loop system converge to the closed orbit.

The property just described is illustrated in this paper with
an example, the model of a PVTOL aircraft moving along a unit
circle on the vertical plane. The control specification is to make the
aircraft traverse the circle with bounded speed, while guaranteeing
that the aircraft does not undergo full revolutions along its longi-
tudinal axis. In this context, the VHC constrains the roll angle of
the aircraft as a function of its position on the circle, preventing
the aircraft from rolling over. On the other hand, the simultaneous
stabilization of the closed orbit corresponds to stabilizing a desired
periodic speed profile on the circle without violating the constraint.
The double-integrator state perturbs the constraint so as to induce
the orbit stabilization mechanism.

Relevant literature. Previous work employs VHCs to stabi-
lize desired closed orbits for underactuated mechanical systems
(Canudas-de Wit, 2004; Canudas-de Wit, Espiau, & Urrea, 2002;
Freidovich et al., 2009; Shiriaev et al., 2005). Canudas-de-Wit and
collaborators (Canudas-de Wit et al., 2002) propose a technique
to stabilize a desired closed orbit that relies on enforcing a vir-
tual constraint and on dynamically changing its geometry so as
to impose that the reduced dynamics on the constraint mani-
fold match the dynamics of a nonlinear oscillator. In Canudas-
de Wit (2004) and Shiriaev et al. (2005), Canudas-de-Wit, Shiri-
aev, and collaborators employ VHCs to aid the selection of closed
orbits of underactuated mechanical systems. It is demonstrated

2 Naturally, actuator saturation will limit the maximum attainable speed of
convergence to the constraint manifold.

that an unforced second-order system possessing an integral of
motion describes the constrained motion. Assuming that this
unforced system has a closed orbit, a linear time-varying con-
troller is designed that yields exponential stability of the closed
orbit. With the exception of Canudas-de Wit et al. (2002), the
papers above do not guarantee the invariance of the VHC for the
closed loop system. The idea of event-triggered dynamic VHCs
has appeared in the work by Morris and Grizzle in Morris and
Grizzle (2009) where the authors construct a hybrid invariant
manifold for the closed-loop dynamics of biped robots by up-
dating the VHC parameters after each impact with the ground.
This approach is similar in spirit to the one presented in this
paper. Finally, the paper (Celikovsky & Anderle, 2016) discusses
collocated VHCs, i.e., VHCs parametrized by actuated variables. In
Section 6, we discuss the differences between the method pre-
sented in this article and the ones in Canudas-de Wit (2004),
Canudas-de Wit et al. (2002) and Shiriaev et al. (2010, 2005).
We also discuss the conceptual similarities between the method
presented in this article and the one in Morris and Grizzle (2009).

Organization. This article is organized as follows. We review
preliminaries in Section 1. The formal problem statement and
our solution strategy are presented in Section 2. In Section 3 we
present dynamic VHCs. In Section 4 we present a novel result of
a general nature providing necessary and sufficient conditions for
the exponential stabilizability of closed orbits for control-affine
systems, and use it to design the input of the double-integrator
to stabilize the closed orbit relative to the constraint manifold. In
Section 5 we present the complete control law solving the VHC-
based orbital stabilization problem. In Section 6 we discuss the
differences between the method presented in this article and the
ones in Canudas-de Wit (2004), Canudas-de Wit et al. (2002) and
Shiriaev et al. (2005). Finally, in Section 7 we apply the ideas of this
paper to a PVTOL aircraft path following problem.

Notation. If x € Rand T > 0, then x modulo T is denoted by [x]r,
and the set {[x]7 : x € R} is denoted by [R]r. This set can be given a
manifold structure which makes it diffeomorphic to the unit circle
S!.Ifaand b are vectors, then col(a, b) := [a' b"]".Ifa, b € R", we
denote (a,b) = a'b, and ||a|| = (a, a)/2. IfA € R™", we denote
by ||All> the induced two-norm of A. If (X, d) is a metric space, I"
is a subset of X, and x € X, we denote by ||x| - the point-to-set
distance of x to I", defined as ||x|| ; := infycd(x,y).Ifh : M — N
is a smooth map between smooth manifolds, and ¢ € M, we denote
by dhg : TyM — TyqN the derivative of h at g (in coordinates, this
is the Jacobian matrix of h evaluated at q), and if M has dimension
1, then we may use the notation h’(q) in place of dhg. If My, My, N
are smooth manifolds and f : M; x M, — N is a smooth function,
then 94, f(q1, 2) denotes the derivative of the map g1 — f(q1, q2)
atqq.Iff : M — TM is a vector fieldon M and h : M — R™is C',
then Lrh : M — R™ is defined as Lfh(q) := dhyf(q). For a function
h: M — R™ we denote by h™1(0) := {g € M : h(q) = O} If
A € R™™ has full row-rank, we denote by A’ the pseudoinverse
of A, AT = AT(AAT)~. Given a C? scalar function f : R" — R, we
denote by Hess(f) its Hessian matrix.

1. Preliminaries
Consider the underactuated mechanical control system

D(q)§ + C(q, §)q + VP(q) = B(q)z, (M

where ¢ = (q1,....qn) € Qs the configuration vector with g;
either a displacement in R or an angular variable in [R], with
T; > 0. The configuration space Q is, therefore, a generalized
cylinder. In (1), B : @ — R™" ! is C! and of full rank n — 1.
Also, D(q), the inertia matrix, is positive definite for all g, and P(q),
the potential energy function, is C'. We assume that there is a C!
function B+ : 9 — R\ {0} such that B*(q)B(q) = Oforallq € Q.
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