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a b s t r a c t

Kernel-based methods have been recently introduced for linear system identification as an alternative
to parametric prediction error methods. Adopting the Bayesian perspective, the impulse response is
modeled as a non-stationary Gaussian process with zero mean and with a certain kernel (i.e. covariance)
function. Choosing the kernel is one of the most challenging and important issues. In the present paper
we introduce the harmonic analysis of this non-stationary process, and argue that this is an important
tool which helps in designing such kernel. Furthermore, this analysis suggests also an effective way to
approximate the kernel,which allows to reduce the computational burdenof the identificationprocedure.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Building upon the theory of reproducing kernel Hilbert spaces
and statistical learning, kernel-based methods for linear system
identification have been recently introduced in the system iden-
tification literature, see Chen, Ohlsson, and Ljung (2012), Chiuso
(2016), Chiuso and Pillonetto (2012), Fraccaroli, Peruffo, and Zorzi
(2015), Lataire and Chen (2016), Pillonetto, Chiuso, and De Nicolao
(2011), Pillonetto andDeNicolao (2010), Pillonetto, Dinuzzo, Chen,
De Nicolao, and Ljung (2014) and Zorzi and Chiuso (2015, 2017).

These methods, framed in the context of Prediction Error Min-
imization, differ from classical parametric methods (Ljung, 1999;
Söderström & Stoica, 1989), in that models are searched for in
possibly infinite dimensional model classes, described by Repro-
ducing kernel Hilbert Spaces (RKHS). Equivalently, in a Bayesian
framework,models are described assigning as prior a Gaussian dis-
tribution; estimation is then performed following the prescription
of Bayesian Statistics, combining the ‘‘prior’’ information with the
data in the posteriors distribution. Choosing the covariance func-
tion of the prior distribution, or equivalently the kernel defining
the RKHS, is one of the most challenging and important issues.
For instance the prior distribution could reflect the fact that the
system is Bounded Input BoundedOutput (BIBO) stable, its impulse
response possibly smooth and so on (Pillonetto et al., 2014).
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Within this framework, the purpose of this paper is to discuss
the properties of certain kernel choices from the point of view
of Harmonic Analysis of stationary processes. The latter is well
defined for stationary processes (Lindquist & Picci, 2015, Chapter
3). In particular, it defines as Power Spectral Density (PSD) the
function describing how the statistical power is distributed over
the frequency domain. In this paper, we extend this analysis for
a particular class of non-stationary processes modeling impulse
responses of marginally stable systems. Accordingly, we define as
Generalized Power Spectral Density (GPSD) the function describ-
ing how the statistical power is distributed over the decay rate–
frequency domain.

Under the assumption that the prior density is Gaussian, the
probability density function (PDF) of the prior is linked to theGPSD.
The main difference is that while the former is defined over an
infinite dimensional space (the underlying RKHS HK ), the latter
is defined over the bidimensional decay rate–frequency space. As
a consequence, the latter is simple to depict but also to interpret
from an engineering point of view. We show experimentally that,
over the class of second-order linear systems, the two provide
similar information. This class is important because: (1) it con-
tains the simplest systems that exhibit oscillations and overshoot;
(2) second order systems are building blocks of higher order
systems and, as such, understanding second order systems helps
understanding higher ones. Furthermore, for a special class of
exponentially convex locally stationary processes (ECLS) typically
used in system identification (Chen & Ljung, 2015a, b), it is possible
to provide (i) a link between the GPSD and the Fourier transform of
the exponentially modulated sample trajectory and (ii) character-
ize the posterior mean in terms of the GPSD. As a consequence, it is
possible to outline a simple procedure for the design of the kernel,
through the GPSD.
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Another important aspect in kernel-basedmethods is to reduce
the computational burden (Chen & Ljung, 2013). This task can
be accomplished by approximating the kernel functions through
eigen-decomposition (Carli, Chiuso, & Pillonetto, 2012) or random
features, (Rahimi &Recht, 2007) techniques. However, thesemeth-
ods can be applied only to special kernel functions. We show that
theGPSDprovides a general procedure to approximate awide class
of kernel functions.

The outline of the paper is as follows. In Section 2 we review
the Gaussian process regression framework used for kernel-based
methods. In Section 3 we present the harmonic representation of
the kernel function of continuous time non-stationary processes
modeling impulse responses of marginally stable systems and in
Section 4 the corresponding discrete time version. In Section 5 we
show the relation between the GPSD and the probability density
function of the prior over the class of second-order linear systems.
In Section 6 we characterize the posterior mean in terms of the
GPSD for a special class of ECLS processes. Section 7 regards kernel
approximation using the GPSD. In Section 8 we present some
numerical examples showing how to exploit the GPSD to design
a kernel function. Finally, conclusions are drawn in Section 9. In
order to streamline the presentation, all proofs are deferred to the
Appendix.

Notation: N denotes the set of the natural numbers, Z is the set of
the integer numbers, R+ the set of the nonnegative real numbers,
R− the set of the negative real numbers, and C is the set of the
complex numbers. Given x ∈ C, |x| denotes its absolute value, ̸ x
denotes its phase and x denotes its conjugate. Given A ∈ Cm×n,
A∗ denotes its transposed conjugate. E[·] denotes the expectation
operator.

2. System identification and Gaussian process regression

For convenience in what follows we consider a discrete time,
stable and linear time-invariant (LTI) single input–single output
(SISO) in OE form:

y(t) = G(z)u(t) + e(t), t ∈ N (1)

where z−1 denotes the backward shift operator; u(t) is the in-
put; y(t) is the noisy output; e(t) is zero mean white noise, that
is E[e(t)e(s)] = σ 2δt−s where δk denotes the Kronecker delta
function. The transfer function G(z) is stable and strictly causal,
i.e. G(∞) = 0. Expanding G(z) in z−1 we obtain the impulse
response of the linear system

G(z) =

∞∑
t=1

g(t)z−t .

The system identification problem can be frased as that of estimat-
ing the impulse response {g(t)}t∈N, from the given data record

ZN
= {u(1), y(1) . . . u(N), y(N)}.

In the Gaussian process regression framework, g(t) is modeled
as a zero-mean discrete time Gaussian process with kernel (co-
variance) function K (t, s) := E[g(t)g(s)]. The minimum variance
estimator of g(t) is given by its posteriormean givenZN (Pillonetto
& De Nicolao, 2010). It is clear that the posterior highly depends on
the kernel functions. Accordingly, themost challenging part of this
system identification procedure is to design K so that the posterior
has some desired properties.

Similarly, in the continuous time case, {g(t)}t∈R+
is a zero-mean

continuous time Gaussian process with kernel function K (t, s) :=

E[g(t)g(s)], with t, s ∈ R+. In what follows, Gaussian processes
(both discrete time and continuous time) are always understood
with zero-mean.

3. Harmonic analysis: continuous time case

It is well known that the impulse response of a finite dimen-
sional LTI stable (or marginally stable) system can be written as a
linear combination of decaying sinusoids (i.e. modes):

ga(t) =

N∑
l=1

|cl|eαlt cos(ωlt + ̸ cl), t ∈ R+ (2)

where αl ∈ R− ∪ {0} and ωl ∈ R are, respectively, the decay rate
and the angular frequency of the lth damped oscillation, and cl ∈ C.
Adopting the Bayesian perspective, g(t) is modeled as a Gaussian
process where the coefficients cl are zero mean complex Gaussian
random variables such that

E[clcl′ ] = φlδl−l′

E[clcl′ ] = 0

with l, l′ = 1 . . .N and φl ≥ 0. Accordingly, the real part and the
imaginary part of cl are independent and with the same variance
φl, see Papoulis and Pillai (2002): roughly speaking, thismeans that
we can rewrite (2) as aweighted sumof sines and cosineswith zero
mean, real valued and independent random coefficients, with the
same variance. For convenience, we rewrite (2) as

ga(t) =

Nα∑
i=1

Nω∑
k=1

|cik|eαit cos(ωkt + ̸ cik) (3)

that is (αi, ωk) belongs to a Nα ×Nω grid contained inR− ∪{0}×R
and cik is a complex Gaussian random variable such that

E[cikci′k′ ] = φikδi−i′δk−k′

E[cikci′k′ ] = 0

with φik ≥ 0. It is then natural to generalize (3) as an infinite
‘‘dense’’ sum of decaying sinusoids1:

g(t) =

∫ 0

−∞

∫
∞

−∞

|c(α, ω)|eαt cos(ωt + ̸ c(α, ω))dωdα (4)

where c(α, ω) is a bidimensional complex Gaussian process,2 here-
after called generalized Fourier transform (GFT) of g(t), such that

E[c(α, ω)c(α′, ω′)] = φ(α, ω)δ(α − α′)δ(ω − ω′)
E[c(α, ω)c(α′, ω′)] = 0

where φ(α, ω) is a nonnegative function onR− ∪{0}×R such that
φ(α, ω) = φ(α, −ω) and δ(·) denotes the Dirac delta function.

Proposition 1. Let K (t, s) be the kernel function of g(t) in (4) then,

K (t, s) =
1
2

∫ 0

−∞

∫
∞

−∞

φ(α, ω)eα(t+s) cos(ω(t − s))dωdα. (5)

Formula (5) is the harmonic representation of the covariance
function of the non-stationary process (4). We refer to φ(α, ω)
as generalized power spectral density (GPSD) of g(t). The latter
describes how the ‘‘statistical power’’ of g(t) (which depends on
t) is distributed over the decay rate–angular frequency spaceR− ∪

{0} × R according to

E
[
g(t)2

]
= K (t, t) =

1
2

∫ 0

−∞

∫
∞

−∞

φ(α, ω)e2αtdαdω.

1 Strictly speaking the integral over α should be understood in an open interval
of the form (−∞, ϵ) with ϵ > 0 and ϵ → 0.
2 To be precise, we should work with the ‘‘generalized stochastic measure’’

C(ω, α), a Gaussian process with orthogonal increments; formally dC(ω, α) =

c(ω, α)dωdα.
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