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a b s t r a c t

In this paper a geometric approach to the trajectory tracking control of Unmanned Aerial Vehicles
(UAVs) with thrust vectoring capabilities is proposed. The control problem is developed within the
framework of geometric control theory, yielding a control law that is independent of any parametrization
of the configuration space. The proposed design works seamlessly when the thrust vectoring capability
is limited, by prioritizing position over attitude tracking. The control law guarantees almost-global
asymptotic tracking of a desired full-pose (attitude and position) trajectory that is compatible with the
platform underactuation according to a specific trackability condition. Finally, a numerical example is
presented to test the proposed control law on a tilt-rotor quadcopter UAV. The generality of the control
strategy can be exploited for a broad class of UAVs with thrust vectoring capabilities.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The development of Unmanned Aerial Vehicles (UAVs) with
thrust vectoring capabilities has grown significantly in recent
years. These aerial vehicles are endowed with a propulsion system
that can deliver both a net torque and a force with respect to
the aircraft frame, which makes them end-effector-like devices.
Among the different technological solutions, several multirotor
configurations have shown great potentiality in terms of fast dis-
turbance rejection andmaneuverability (Crowther, Lanzon,Maya-
Gonzalez, & Langkamp, 2011; Hua, Hamel, Morin, & Samson, 2015;
Jiang & Voyles, 2014; Rajappa, Ryll, Bülthoff, & Franchi, 2015; Ryll,
Bülthoff, & Robuffo Giordano, 2015). Indeed, while the standard
coplanar multirotor architecture (Abdessameud & Tayebi, 2010;
Lee, Leok, & McClamroch, 2010; Naldi, Furci, Sanfelice, & Marconi,
2017) combines good performance and a simple mechanical de-
sign, it is inherently underactuated as the control force can be ap-
plied only in a fixed direction of the aircraft frame. On the contrary,
thrust vectoring vehicles overcome this intrinsic maneuverability
limitation and widen the operational range of the conventional
system. Among the different architectures that have been devel-
oped, it is worth mentioning the fixed-tilted hexacopter (Rajappa
et al., 2015) and the tilt-rotor quadcopter (Ryll et al., 2015).

The trajectory tracking control problem for these aerial vehicles
is challenging for two main reasons: the maneuver may involve
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large rotational motions and there may be limitations in the thrust
vectoring capability, thus reducing the actual maneuverability. In
particular, propulsion systems of thrust-vectoring UAVs cannot
usually deliver thrust in any direction of the aircraft frame (Ra-
jappa et al., 2015), whichmakes the platformunderactuated. These
issues have been addressed explicitly in Hua et al. (2015), in which
the control strategy is based on prioritizing position over attitude
tracking to handle the actuation limitation. The resulting control
law guarantees almost-global tracking (in the sense of Koditschek
(1989)) but requires a sufficiently fast loop for the stabilization of
the angular velocity. Following similar ideas, Franchi, Carli, Bicego
and Ryll, (2018) tackled the tracking problem for a more general
class of UAVs with laterally bounded input force. The approach
presented therein includes an optimization step to handle the ac-
tuation limitation but it guarantees only local exponential conver-
gence of the tracking errors. Thrust vectoring control techniques
have also been exploited to solve the position tracking problem
of ducted-fan vehicles (Abdessameud & Tayebi, 2010; Pflimlin,
Souères, & Hamel, 2007; Roberts & Tayebi, 2011).

In this work, the trajectory tracking problem for UAVs with
thrust vectoring capabilities is solved directly in SO(3) × R3, with
thrust and torque as inputs. We start by showing that tracking of a
desired full-pose trajectory (position and attitude) is not feasible
if the thrust can be produced only in a cone region around the
vertical body axis of the vehicle. However, by relaxing attitude
tracking requirements, position tracking can always be achieved.
In particular, a reference attitude, different from the desired one,
is computed bymeans of a dynamic controller such that it is always
possible to deliver the control force required to guarantee position
tracking. Then, the modified attitude trajectory is used as the
actual reference for the attitude control subsystem. By exploiting a
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Fig. 1. Reference frames - tilt-rotor quadcopter UAV.

geometric PID controller, the modified attitude motion is tracked
even in the presence of a constant disturbance torque. We prove
that under a specific trackability condition, also the desired atti-
tude motion can be exactly tracked almost globally. By means of
established cascade arguments (Naldi et al., 2017; Raptis & Valava-
nis, 2010),we demonstrate that our solution ensures almost-global
asymptotic tracking (AGAT), which is the strongest result one
can obtain on SO(3) × R3 with continuous time-invariant control
laws (Koditschek, 1989). Furthermore, the proposed control law
improves the transient performance, in terms of position over-
shoot, with respect to the most common solution in the literature,
as it is shown in a numerical example.

Notations. ForA ∈ Rn×n, theminimumandmaximumeigenvalues
are denoted as λm(A) and λM (A), respectively, and skew(A) :=
A−AT

2 is the skew-symmetric part of A. The ith canonical base in
Rn is ei := [0 · · · 1 · · · 0]T , while the identity element in Rn×n is
In := [e1 · · · en]. Given the vectors a, b we often denote (a, b) :=

[aT , bT ]T . Given a bounded function f : R → Rn, we denote
the positive constants fm and fM as lower and upper bounds of f ,
respectively, such that fm ≤ ∥f (t)∥ ≤ fM ∀t ∈ R. The hat map
·̂ : R3

→ so (3) is an isomorphism between R3 and so (3), the
space of third order skew-symmetric matrices, such that ω̂y =

ω × y, ∀y ∈ R3, where × is the cross product. The corresponding
inverse is the vee map (·)∨ : so (3) → R3. We will often employ
the modified trace function ΨK (R) :=

1
2 tr(K (I3 − R)), where K =

K T
∈ R3×3 is such that tr(K )I3 − K ∈ R3×3

>0 , to measure attitude
errors in SO(3). The time derivative ofΨK along the flows of Ṙ = Rω̂
is Ψ̇K (R) = eTRω, where eR :=

skew(KR−RT K )∨
2 is the left-trivialized

derivative of ΨK . When K has distinct positive eigenvalues, ΨK is
an example of polar Morse function (Koditschek, 1989).

2. Mathematical modeling

The class of aerial vehicles considered in this work can be
described as rigid bodies subjected to external actions and with
an actuation mechanism that can produce torque in any direction
and thrust in a spherical sector around the vertical axis of the body
frame.

2.1. Dynamical model

The motion of a rigid body is described by the motion of a
body-fixed frame FB = (OB, {b1, b2, b3}) with respect to an inertial
reference frame FI = (OI , {e1, e2, e3}), as shown in Fig. 1 (for the
sake of simplicity, we assume that the inertial frame axes coincide
with the canonical basis of R3). The configuration of a rigid body is

uniquely and globally defined by G := (R, x) ∈ SO(3) × R3
=: M,

where R := [b1 b2 b3] ∈ SO(3) is the rotation matrix describing
the orientation of FB with respect to FI and x ∈ R3 is the position
vector of the origin OB with respect to OI , resolved in the reference
frameFI . The tangent vector to a curve (velocity) at a given config-
uration G ∈ M is the pair (ω, v) ∈ TRSO(3) × R3

≃ TGM, by direct
identification of R3 with its tangent space TxR3. The equations of
motion of a rigid body moving in a constant gravity field −ge3,
actuated by a control wrench (fc, τc) ∈ R3

× R3 and subjected to
external disturbances (fd, τd) ∈ R3

×R3, which include unmodeled
dynamics and aerodynamic effects, are described by the following
system (Naldi et al., 2017):

ẋ = v (1)

Ṙ = Rω̂ (2)
mv̇ = −mge3 + Rfc + fd (3)
Jω̇ = −ω × Jω + τc + τd, (4)

wherem ∈ R>0 and J = JT ∈ R3×3
>0 are the mass and inertia matrix

of the rigid body, respectively. Note that the control wrench (fc, τc)
is defined with components in the body frame FB.

3. Control problem: trajectory tracking in SO(3) × R3 under
thrust vectoring constraints

The thrust-vectoring limitation of the actuationmechanism are
now formally defined. In the following, the control torque τc is
assumed to span R3, i.e., the rotational dynamics is fully actuated.
However, the control force fc spans only the spherical sector,
around the third body axis b3, defined as:

0 < cos (θM) ≤
f Tc (t)e3
∥fc(t)∥

:= cos(θc(t))

∥fc(t)∥ ≤ fM ∀t ≥ 0. (5)

These assumptions may be reasonable approximations for UAVs
like the tilt-rotor quadcopter in Fig. 1 (Franchi et al., 2018). Let us
now consider a smooth desired trajectory t ↦→ (Rd(t), xd(t)) =:

Gd(t) ∈ M that is assigned as a function of time and the
corresponding tangent vector that is given by t ↦→ ξd(t) :=

(vd(t), ωd(t)) ∈ TGdM, where ωd(t) = (RT
d (t)Ṙd(t))∨ ∈ R3 is the

desired (body) angular velocity and vd(t) = ẋd(t) ∈ R3 is the
desired (inertial) translational velocity. Due to the thrust vectoring
limitation in (5), an arbitrary full-pose trajectory in M cannot be
followed. This can be understood by inspecting the inputs at steady
state obtained by inverting the system dynamics:

f nc (t) := mRT
d (t)(v̇d(t) + ge3) (6)

τ nc (t) := Jω̇d(t) + ωd(t) × Jωd(t), (7)

in which, for simplicity, we assumed nominal conditions, i.e.,
(fd, τd) = (0, 0). Clearly, whereas Eq. (7) is always fulfilled for
any sufficiently smooth trajectory, the control force (6) may not
be compatible with constraint (5) for a given desired attitude
motion Rd(t) and a given vector m(v̇d(t) + ge3). As a consequence,
the control objective must be relaxed to deal with the platform
underactuation. In particular, since position tracking is of utmost
importance in applications involving aerial vehicles, wewill devise
a strategy that always ensures position tracking and that tries to
achieve the attitude tracking objective at best. In this regard, Eq. (6)
provides a useful hint: it is always possible to find a rotationmatrix
such that the resulting control force is inside the cone region
defined by (5). Therefore, it is assumed that the actual attitude
reference is at least a twice differentiable curve defined as:

t ↦→ Ra(t) ∈ SO(3) ∩ C2, (8)

which will be computed dynamically in order to satisfy the cone
region constraint (5) and to be as close as possible to the desired
attitude t ↦→ Rd(t).
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