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a b s t r a c t

Approximate dynamic programming techniques usually rely on the feedback of the measurement of
the complete state, which is generally not available in practical situations. In this paper, we present
an output feedback Q-learning algorithm towards finding the optimal strategies for the discrete-time
linear quadratic zero-sum game, which encompasses the H-infinity optimal control problem. A new
representation of the Q-function in the output feedback form is derived for the zero-sum game problem
and the optimal output feedback policies are presented. Then, a Q-learning algorithm is developed that
learns the optimal control strategies online without needing any information about the system dynamics,
whichmakes the control design completelymodel-free. It is shown that the proposed algorithmconverges
to the optimal solution obtained by solving the game algebraic Riccati equation (GARE). Unlike the value
function based approach used for output feedback, the proposed Q-learning scheme does not require a
discounting factor that is generally adopted to mitigate the effect of excitation noise bias. It is known that
this discounting factor may compromise the closed-loop stability. The proposed method overcomes the
excitation noise bias problemwithout resorting to the discounting factor, and therefore, converges to the
nominal GARE solution. As a result, the closed-loop stability is preserved. An application to the H-infinity
autopilot controller for the F-16 aircraft is demonstrated by simulation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

H-infinity control offers robust performance and stabilization
guarantee (Chen, 2013), which make it a good candidate in control
problems involving external and cross-coupling disturbances. It
finds many important applications such as rotorcrafts (Postleth-
waite, Smerlas, Walker, Gubbels, Baillie, Strange, & Howitt, 1999),
VSTOL aircrafts (Hyde, Glover, & Shanks, 1995), guided projectiles
(Strub, Theodoulis, Gassmann, Dobre, & Basset, 2015), satellites
(Frapard & Champetier, 1997) and power systems (Al-Tamimi,
Lewis, & Wang, 2007). It has been shown that the H-infinity
problem is strongly related with the zero-sum game problem in
game theory (Başar & Bernhard, 2005). The Bellman optimality
principle plays a key role in solving the optimal control problems
using the well-known Bellman or Hamilton–Jacobi–Bellman (HJB)
equations. The main difficulty comes from finding the analytical
solutions to the HJB equation as it is a partial differential equation.
For the special case of linear systems, finding the solution of an
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optimal control problem leads to solving the algebraic Riccati
equations (AREs) associated with the control methods such as
linear quadratic regulator (LQR) and the H-infinity optimal control
(Başar & Bernhard, 2005; Lancaster & Rodman, 1995; Lewis &
Syrmos, 1995). These AREs are nonlinear in the unknown param-
eters and solving these equations requires complete knowledge of
the system dynamics. Computational algorithms have been used
to iteratively solve the AREs owing to the difficulty in solving
these equations (Hewer, 1971; Lancaster & Rodman, 1995). These
algorithms still require full knowledge of the system dynamics.

Reinforcement learning (RL) is a method of solving dynamic
optimization problems inwhich an actor or agent interacts with its
environment (system) and modifies its actions, or control policies,
based on some stimuli received in response to its actions. In control
theory, such techniques are often referred to as adaptive dynamic
programming (ADP) or heuristic dynamic programming (HDP).
These learning based control methods have been successfully ap-
plied towards finding optimal feedback controllers for dynamical
systems represented by ordinary differential or difference equa-
tions without requiring full knowledge of the system dynamics
(Si, 2004). RL-ADP methods often employ function approximation
techniques to learn the solution of the Bellman optimality equa-
tion. Two techniques that have been successfully applied in these
learning control schemes are value function approximation and
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Q-learning. Q-learning performs learning over the complete state
and action space while value function learning focuses on the state
space only. Q-learning offers a completely model-free solution
(Watkins & Dayan, 1992; Werbos, 1992). A background on these
techniques is given in Lewis and Liu (2013) and Lewis and Vrabie
(2009).

Popular optimal control problems such as the linear quadratic
regulator (LQR) have been successfully solved using the Q-learning
approach (Bradtke, Ydstie, & Barto, 1994; Landelius, 1997). How-
ever, in these works, access to the complete state vector is needed.
To overcome the requirement of full-state feedback, output feed-
back techniques have been successfully used that make the whole
control design more practical as the number of sensors required
is considerably reduced. However, these classical output feedback
techniques rely on a dynamic model of the system to estimate
the system state, which, in the case of reinforcement learning, is
assumed to be unavailable.

Model-free state estimation techniques have gained attention
recently. In particular, neural network observers have been devel-
oped to provide model-free state estimation (Liu, Huang, Wang, &
Wei, 2013; Zhong & He, 2017). Model-free output feedback control
can also be achieved by designing a controller directly in the input–
output feedback form. These methods have the advantage that
the need of a separate state observer is eliminated. A model-free
input–output data based scheme was first presented in Lewis and
Vamvoudakis (2011) to learn an output feedback LQR controller
by using the value function approach. Following the same line,
the authors in Kiumarsi, Lewis, Naghibi-Sistani, and Karimpour
(2015) solved the model-free optimal tracking problem. Similarly,
the continuous-time linear quadratic output feedback problem
was addressed in Modares, Lewis, and Jiang (2016). It should be
noted that the value function approach is affected by the excitation
noise bias problem because the Bellman equation associated with
the value function does not include excitation noise. Whereas, an
exploratory noise signal is necessary in RL to guarantee param-
eter convergence. To address this difficulty, a discounting factor
in the cost function was introduced in all these output feedback
model-free designs, which leads to a sub-optimal solution to the
optimal control problem. Studies like Postoyan, Busoniu, Nesic, and
Daafouz (2017) have shown that this discounting factor may result
in closed-loop instability. This issue of excitation noise bias in the
value functions has also been discussed in Kiumarsi, Lewis, and
Jiang (2017) for the model-free H-infinity problem. A Q-learning
schemewas recently developed in Rizvi and Lin (2017) to solve the
output feedback LQR problemwithout resorting to the discounting
factor.

Recently, RL-ADP methods have been successfully applied to
provide a model-free solution to the zero-sum game problem. A
Q-learning solution to the discrete-time linear quadratic zero-sum
game was first developed in Al-Tamimi, Lewis, and Abu-Khalaf
(2007), where its application to the H-infinity control problem
was shown. Later, the continuous-time zero-sum game problem
was solved using partially model-free (Vrabie & Lewis, 2011) and
completely model-free (Li, Liu, & Wang, 2014) integral reinforce-
ment learning methods. For nonlinear systems, interested readers
can refer to Luo, Wu, and Huang (2015). Recently, an off-policy
ADP algorithm was proposed in Kiumarsi et al. (2017) to solve
the discrete-time linear quadratic zero-sum game problem, where
the issue of excitation noise bias was also addressed. However, in
all these works, the measurement of the complete state vector is
required. Although output feedback RL algorithms based on value
functions (Lewis & Vamvoudakis, 2011) can be used to solve the
zero-sum game and the H-infinity problems, these methods are
prone to the excitation noise bias. Consequently, a discounting
factor is adopted to ensure convergence to a sub-optimal solu-
tion. Such a sub-optimal solution, however, does not ensure the

closed-loop stability as discussed earlier. Although there exists a
lower bound on the discounting factor above which the closed-
loop stability may be ensured, the computation of this bound
requires knowledge of the system dynamics, which is assumed to
be unknown in this problem (Postoyan et al., 2017).

The contributions of this paper are as follows. Compared to the
state feedback based model-free approaches (Al-Tamimi, Lewis,
& Abu-Khalaf, 2007; Kiumarsi et al., 2017), we have proposed
an output feedback method, which is more practical in real-
world applications. That is, we seek an output feedback model-
free solution towards solving the discrete-time linear quadratic
zero-sum games and the associated H-infinity control problem.
We have developed an output feedback Q-function description
which is more comprehensive than the value function description
(Lewis &Vamvoudakis, 2011) due to the explicit dependence of the
Q-function on the control inputs and disturbances. In contrast to
Lewis and Vamvoudakis (2011), the issue of excitation noise bias
is not present in our work due to the inclusion of the input terms
in the cost function, which results in the cancellation of noise
dependent terms in the Bellman equation. A proof of excitation
noise immunity of the proposed scheme is provided. The proposed
algorithm does not require a discounting factor which is used in
output feedback value function learning. It has been shown that
the proposed method guarantees closed-loop stability and that
the learned output feedback controller is the optimal controller
corresponding to the solution of the original Riccati equation. To
the best of our knowledge, this is the first work that performs
output feedback with Q-learning for the H-infinity problem. Also,
our approach is different from the recently proposed off-policy
technique used in Kiumarsi et al. (2017), which also addresses the
excitation noise issue but requires an initially stabilizing policy and
full-state feedback. Both of these requirements are not present in
this work. We note that the output feedback law we developed
here is completely model-free. While other output feedback con-
trol schemes exist in the literature, they require certain knowledge
of the systemdynamics and employ a separate state estimator (see,
for example, He, Ge, Li, Chew, & Ng, 2015; He, He, & Ge, 2016).

The remainder of this paper is organized as follows. Section 2
provides a description of the problem. In Section 3, we present an
output feedback representation of the Q-function for the discrete-
time linear quadratic zero-sum game problem, using which the
optimal output feedback policies are developed. Themain result of
this paper is presented in Section 4, where the Q-learning iterative
algorithm is proposed that learns the optimal output feedback
policies online without requiring any knowledge of the system
dynamics. Finally, Section 5 includes simulation results on the
proposed scheme. Some concluding remarks aremade in Section 6.

2. Problem description

Consider a discrete-time linear time-invariant system in the
state-space form,

xk+1 = Axk + Buk + Ewk,

yk = Cxk,
(1)

where xk ∈ Rn is the system state vector, uk ∈ Rm1 is the
control input vector, wk ∈ Rm2 is the disturbance input vector,
and yk ∈ Rp is the output vector. The zero-sum problem game
can be formulated as a minimax problem with the cost function of
the form (Al-Tamimi, Lewis, & Abu-Khalaf, 2007; Başar & Bernhard,
2005; Kiumarsi et al., 2017),

V ∗(xk) = min
ui

max
wi

∞∑
i=k

r(xi, ui, wi), (2)
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