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a b s t r a c t

We present a novel dual-mode MPC scheme that significantly reduces the computational effort of robust
MPC (RMPC). Specifically, we propose a method for the computation of a large set C on which no optimal
control problem (OCP) needs to be solved online. The method is motivated by the trivial observation
that, for classical MPC, no optimization is required for the states in the terminal set T , because the
unconstrained linear–quadratic regulator is optimal there. While this observation cannot be directly
transferred to RMPC, we show that suitable sets C exist in the neighborhood of T and state an algorithm
for their computation. We stress that the resulting sets C are significantly larger than robust positively
invariant sets that are typically exploited in RMPC and on which it is well-known that no OCP needs to be
solved online. The approach is illustrated with three examples for which we observe a reduction of the
numerical effort between 22.36% and 95.60%.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction and problem statement

Model predictive control (MPC, Camacho & Bordons, 1999;
Kouvaritakis & Cannon, 2015; Maciejowski, 2001; Rawlings &
Mayne, 2009) has become a standard tool for the regulation of
dynamical systems with state and input constraints. MPC is well-
established in theory and practice particularly for processes that
can accurately be modeled by linear systems. Here, we study the
predictive control of linear discrete-time systems of the form

x(k+ 1) = A x(k)+ B u(k)+ w(k) (1)

with state, input, and disturbance constraints

x(k) ∈ X , u(k) ∈ U, and w(k) ∈ W (2)

for every k ∈ N. Conceptually, MPC is based on periodically solving
an optimal control problem (OCP) that allows to explicitly account
for the constraints (2) and some performance criterion. In classical
linearMPC, disturbances are ignored and theOCP is formulated un-
der the assumption that w(k) = 0. This simplification is tolerable,
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to a certain extent, since nominal MPC is intrinsically robust (see,
e.g., Grimm, Messina, Tuna, & Teel, 2004; Kerrigan, 2000; Limón,
Alamo, & Camacho, 2002; Scokaert, Rawlings, & Meadows, 1997).
However, there existmany robustMPC (RMPC) schemes that allow
to explicitly include disturbances in the OCP (see, e.g., Alamo,
Muñoz de la Peña, Limon, & Camacho, 2005; Bemporad & Morari,
1999; Campo & Morari, 1987; Langson, Chryssochoos, Raković,
& Mayne, 2004; Mayne, Seron, & Raković, 2005; Raković, Kou-
varitakis, Cannon, & Panos, 2012). For disturbed systems, these
methods outperform deterministic MPC since they guarantee ro-
bust asymptotic stability (with convergence to a neighborhood
of the origin) for every feasible initial state. RMPC schemes can
be distinguished based on their performance criterion and distur-
bance handling. In tube-based RMPC (as in Langson et al. (2004)
and Mayne et al. (2005)), the performance of the nominal system
(which, again, results forw(k) = 0) is considered and a tube around
the nominal trajectory is constructed to account for disturbances.
In contrast, in min–max RMPC (Alamo et al., 2005; Campo &
Morari, 1987), the worst-case scenario is optimized. Tube-based
RMPC and classical MPC are structurally very similar and it is the
purpose of this paper to further investigate those similarities. To
this end, we note that the underlying OCP can be formulated as

V (x0) := min
x̂(0),...,x̂(N)

û(0),...,û(N−1)

∥x̂(N)∥2P +
N−1∑
k=0

∥x̂(k)∥2Q + ∥û(k)∥
2
R (3)

s.t. x0 − x̂(0) ∈ S,

x̂(k+ 1) = A x̂(k)+ B û(k), ∀k ∈ {0, . . . ,N − 1}
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x̂(k) ∈ XMPC, ∀k ∈ {0, . . . ,N − 1}
û(k) ∈ UMPC, ∀k ∈ {0, . . . ,N − 1}
x̂(N) ∈ T

in both cases (Mayne et al., 2005). Thereby, N is the prediction
horizon, P , Q and R are weighting matrices, S bounds variations
between the current system state x0 and the initial state x̂(0) of the
predicted trajectory,XMPC ⊆ X andUMPC ⊆ U describe (potentially
tightened) state and input constraints, and T is a terminal set.
Clearly, for S = {0} (i.e., x̂(0) = x0), XMPC = X , and UMPC = U ,
we obtain a classical MPC scheme. In contrast, choosing a robust
positively invariant (RPI) set S ⊃ {0} and tightened constraints
XMPC ⊂ X and UMPC ⊂ U , results in tube-based RMPC (see
Section 2.3 for details). For both classical MPC and tube-based
RMPC, (3) is solved in every time-step for the current state x0 and
only the first elements of the optimal state and input trajectories
are used to control the system. More precisely, the control law

ϱ(x0) := û∗(0)+ K (x0 − x̂∗(0)), (4)

is applied (Mayne et al., 2005, Eq. (23)), where the role of K will be
specified in Section 2.3. Here, we stress that K is only relevant for
RMPC, since we have x0 − x̂∗(0) = 0 for classical MPC.

It is obviously desirable to reduce the numerical effort required
for solving (3) whenever possible. A radical approach in this di-
rection is explicit MPC (EMPC, see Bemporad, Morari, Dua, &
Pistikopoulos, 2002; Seron, DeDona, & Goodwin, 2000). In EMPC,
the OCP (3) is solved offline (i.e., before runtime of the controller)
for every feasible x0 and the resulting piecewise affine control law
is cataloged. In principle, EMPC allows to completely avoid online
optimization. However, the computation of the explicit control law
is numerically hard for systems with many constraints or long
prediction horizons. Moreover, the number of affine segments is
often too high to implement or store the explicit controller on the
target hardware. However, in classical MPC, online optimization
can be avoided for some x0 even if EMPC cannot be applied. In fact,
for the standard choice of P and T (see Section 2.1), the optimal
input û∗(0) equals KLQRx0 for every x0 ∈ T , where KLQR is the
feedback gain of the (unconstrained) linear–quadratic regulator
(LQR). This observation is used in dual-modeMPC (see, e.g., Mayne,
Rawlings, Rao, & Scokaert, 2000, Sects. 2.4.2.3 and 3.7.3), where
numerically solving (3) is avoided in the whole terminal set T .

The role of the terminal set T in RMPC is different than in
classical MPC. In fact, for tube-based and min–max RMPC, trivial
solutions to the OCPs are only known for the RPI set S (see Kouvari-
takis & Cannon, 2015, Alg. 4.5; Mayne et al., 2005, Prop. 2; Scokaert
& Rawlings, 1998, Alg. 1), or Section 3.1), which usually is signifi-
cantly smaller than T . In this paper, we show that a simple solution
is also available on some set C ⊃ S. Surprisingly, C can even be
larger than the terminal set T (see the first and third examples in
Section 4.1). The set C can be used to design a dual-mode RMPC
scheme that avoids the numerical solution of (3) whenever the
current system state lies in C. Similar to event-triggered control
(see Heemels, Johansson, & Tabuada, 2012 and references therein),
dual-mode (R)MPC is useful in situations, where energy-aware
control is needed, where optimization tasks are solved centralized,
or where communication is costly (see, e.g., Jost, Schulze Darup,
& Mönnigmann, 2015). In this context, we show that our dual-
mode controller allows to significantly reduce the numerical effort
during runtime compared to standard RMPC.

The paper is organized as follows. We state notation and as-
sumptions in the remainder of this section. In Section 2, we re-
call stabilizing MPC and RMPC parametrizations. Our main result,
i.e., an efficient dual-mode RMPC scheme, is presented in Section 3.

The approach is illustrated with three numerical examples in
Section 4 before we state conclusions in Section 5.

Notation and assumptions. For sets C,D ⊂ Rn, α ∈ R, and A ∈
Rn×n, we define α C := {αx | x ∈ C}, A C := {Ax | x ∈ C},
C ⊕ D := {x + ξ | x ∈ C, ξ ∈ D} (Minkowski sum), and C ⊖ D :=
{x | ∀ξ ∈ D : x + ξ ∈ C} (Pontryagin difference). The boundary
and the interior of C are denoted by ∂C and int(C). The Minkowski
function of C is defined as ΨC(x) := inf{α ≥ 0 | x ∈ α C}. We
further define B(δ) := {x ∈ Rn

| ∥x∥2 ≤ δ}. The smallest and
largest singular values of a matrixΩ ∈ Rq×n are denoted σmin(Ω)
and σmax(Ω). The matrix Iq refers to the identity matrix in Rq×q, ei
is the ith canonical unit vector in Rq, a q-dimensional vector with
all entries equal to 1 is written as 1q, and, for P ∈ Rn×n, ∥x∥2P is
understood as x⊤Px. Finally, throughout the paper, we assume that
(A, B) is stabilizable, thatX ⊂ Rn, U ⊂ Rm, andW ⊂ Rn are convex
and compact polytopes containing the origin as an interior point,
that Q ∈ Rn×n and R ∈ Rm×m are positive definite matrices, and
that N ∈ N is positive.

2. Stabilizing (R)MPC parametrizations

Conditions guaranteeing stability in (R)MPC are well-known
(see, e.g., Mayne et al., 2000, 2005).We recall some results required
here.

2.1. Choice of P and T

We briefly summarize the standard choice of P and T for
stabilizing MPC (see, e.g., Scokaert & Rawlings, 1998; Sznaier &
Damborg, 1987). First, P is chosen as the solution of the Riccati
equation

A⊤(P − P B (R+ B⊤P B)−1B⊤P) A− P + Q = 0.

Next, the LQR gain KLQR := −(R + B⊤P B)−1B⊤P A is computed.
Finally, T is chosen as

T := {x ∈ Rn
| ∀k ∈ N : (A+ BKLQR)kx ∈ L} (5)

where L := {x ∈ XMPC | KLQR x ∈ UMPC} (Gilbert & Tan, 1991). Note
that L depends on the constraintsXMPC and UMPC considered in (3).
The choice of XMPC and UMPC is detailed in Sections 2.2 and 2.3.

2.2. Choice of S , XMPC, and UMPC for classical MPC

Setting S = {0}, XMPC = X , and UMPC = U results in classical
MPC. Due to x̂(0) = x0, we find V (x0) = ∥x0∥2P and

u∗(0) = KLQR x0 for every x0 ∈ T (6)

with P , KLQR, and T as in Section 2.1 (Sznaier & Damborg, 1987).
Hence, classicalMPC can be implemented as the dual-mode control
law

ϱ(x0) =
{
KLQR x0 if x0 ∈ T ,
u∗(0) otherwise,

(7)

which requires a numerical optimization only if x0 ̸∈ T .

2.3. Choice of S , XMPC, and UMPC for tube-based RMPC

In tube-based RMPC, the original constraints (2) are tightened
to compensate disturbances. To this end, an RPI set for the system
x(k+ 1) = (A+ BK ) x(k)+w(k) is computed, where K is such that
A+ BK is Schur. The defining property of an RPI set R is

(A+ BK )R⊕W ⊆ R. (8)
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