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a b s t r a c t

Vehicle platooning has received considerable attention as a means to achieve more efficient transporta-
tion networks and vehicle autonomy. It is well known that certain systems experience undesired be-
haviours (instability and string instability) when the length of the platoon grows. In this context, we study
homogeneous platoons of vehicleswith linear dynamicmodels, having bi-directional communication and
maintaining a constant (velocity independent) target inter vehicle spacing. We investigate both stability
and string instability if the string length increases, where the vehicles utilise weighted information from
multiple vehicles ahead and behind. We find conditions for the weighting factors and the linear systems
that are necessary for stability of long platoons. We then show that by selecting a communication range
that increases linearly with the platoon size, it is possible to achieve string stability in some cases.
Further, we show that careful selection of the weighting factors can reduce the disturbance amplification
considerably.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Vehicle platooning is commonly studied, see for example Ba-
rooah and Hespanha (2005), Cook (2007), Herman, Martinec,
Hurák, and Śebek (2015), Lestas and Vinnicombe (2007), Levine
and Athans (1966), Martinec, Herman, and Sebek (2016), Melzer
and Kuo (1971), Middleton and Braslavsky (2010), Peppard (1974),
Rogge and Aeyels (2008), Seiler, Pant, and Hedrick (2004), Swa-
roop and Hedrick (1996), Swaroop and Hedrick (1999), Verginis,
Bechlioulis, Dimarogonas, and Kyriakopoulos (2017), Zheng, Li, Li,
and Wang (2016), Zheng, Li, Wang, Cao, and Li (2016). In this
application multiple vehicles are controlled to maintain a certain
formation.

While early works focused on a centralised control approach
(Levine & Athans, 1966; Melzer & Kuo, 1971), the large number of
vehicles demands a distributed or decentralised solution. Here, the
vehicle controller uses local information from other neighbouring
vehicles (Barooah & Hespanha, 2005; Cook, 2007; Herman, Mar-
tinec, Hurák et al., 2015; Martinec et al., 2016; Peppard, 1974;
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Verginis, Bechlioulis, Dimarogonas, & Kyriakopoulos, 2015; Vergi-
nis et al., 2017) and in some cases from the leading vehicle (Cook,
2007; Fax &Murray, 2004; Middleton & Braslavsky, 2010; Seiler et
al., 2004; Swaroop&Hedrick, 1999; Zheng, Li, Li et al., 2016; Zheng,
Li,Wang et al., 2016). Someof these distributed systems can exhibit
two issueswith increasing platoon size. The first issue is instability,
while the second is an unbounded amplification of disturbances
(commonly known as string instability (Peppard, 1974)).

Themethods used to analyse these systems range from classical
control theory to spatial–temporal system techniques (Bamieh,
Paganini, & Dahleh, 2002; Knorn, 2012). Recent works combine
control theoretic approacheswith graph theory. In that context the
vehicle’s behaviour is governed by an individual dynamic system,
while the information exchange among the vehicles is represented
as a graph. In this paper we follow this approach. There are three
design choices that have a profound impact on stability and string
stability: (1) the formation and spacing policy; (2) the dynamic
system of the individual vehicles; and (3) the information flow.

Two formations are common: string and cyclic formations. In
the former the vehicles form a line with a leader. This is the most
common interconnection and can represent highway traffic. In the
cyclic formation, the vehicles form a real or virtual circle. This is
present for example in light rail, subway circuits, or densely used
road systems (e.g. ring roads) in cities. Additionally, cyclic forma-
tions, simplify the analysis due to structural properties. Hence,
these systems can be useful to establish results for the string
formation, as argued in Herman, Martinec, and Veerman (2016)
and Herman, Martinec, Veerman, and Sebek (2015), however they
experience different issues. For example, while stability is usually
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achieved in uni-directional string formations, this no longer holds
for cyclic formations.

Within the given formation the vehicles aim to maintain a
predefined inter vehicle distance, defined via the spacing policy.
Two spacing policies are common: constant spacing and a velocity
dependent spacing. While a constant spacing is known to cause
(string) stability issues in some cases, it has the desirable property
of achieving a more efficient traffic flow compared to a velocity
dependent distance, which experiences less of the known stability
issues. Sometimes the use of a velocity dependent spacing policy is
suggested to avoid (string) instability (Peters, Middleton, &Mason,
2016; Rogge & Aeyels, 2008).

In this paperwe utilise the structural properties of cyclic forma-
tions to obtain conditions for stability and string stability, when a
constant spacing policy is utilised.

The second design choice is the dynamic system model used.
Even though a vehicle is a non-linear system, a common approach
is to linearise the dynamics. For example, feedback linearisation is
used in Zheng, Li, Li et al. (2016) and Zheng, Li, Wang et al. (2016).
In this paper, we assume that such a technique has been used
and base our analysis on a general linear time invariant system
containing two integrators. Note that such a general representation
includes commonly used models (Zheng, Li, Li et al., 2016; Zheng,
Li, Wang et al., 2016).

We acknowledge that the use of non-linear controllers can
improve the exhibited issuesHuang, Huang, Deng, andChen (2017)
and Verginis et al. (2017).

Finally, the third main impact factor is the information flow,
which can be captured using a graph. Hence, the Laplacian of
the graph is very important (Barooah & Hespanha, 2005; Herman,
Martinec, Hurák et al., 2015; Yadlapalli, Darbha, &Rajagopal, 2006).

It is shown in Peters et al. (2016) that instability is unavoid-
able with increasing platoon lengths using only the information
of the predecessor. So without other measures, the extension of
the communication range is an option to avoid string stability
issues. Hence, we allow an extended bi-directional communication
range r , where the information of r vehicles in front and back is
considered. The information of the first vehicle is not passed on.
This set up is similar to the one in Herbrych, Hazirakis, Christakis,
and Veerman (2017) and Middleton and Braslavsky (2010) except
that (1) we allow weighting between the information received by
different vehicles1 ; and (2) we consider a communication length r
that can grow with the platoon size n.

This paper expands on the results presented in Stüdli, Seron,
and Middleton (2017b). In detail, additional insight is given for
positional symmetric weighting factors in regard to stability and
the results on string stability are extended for non-equalweighting
factors. For completeness some parts are repeated. The paper is
structured as follows. In Section 2, the system is described in
detail. We investigate stability in Section 3 and string stability in
Section 4. In Section 5 we conclude the paper and point out future
work.

2. System definition

Weuse the general systemdescription as in Stüdli et al. (2017b),
which is commonly used, see for example Barooah and Hespanha
(2005), Herman, Martinec, Hurák et al. (2015), Li, Duan, and Chen
(2011), Tonetti and Murray (2010), Tonetti and Murray (2011),
Yadlapalli et al. (2006), You and Xie (2013).

1 The inclusion of theweighting factors is an important difference to other works
including some on non-cyclic structures as the ones in Zheng, Li, Li et al. (2016) and
Zheng, Li, Wang et al. (2016).

2.1. Plant

We consider a platoon of n homogeneous vehicles which aim
to keep a predefined distance to their predecessors. Such a set up
was considered in several studies for example Barooah,Mehta, and
Hespanha (2009),Middleton and Braslavsky (2010) and Seiler et al.
(2004). The transfer function P̄(s) of each vehicle maps the control
input ui(s) to the vehicle x-coordinate, such that

xi(s) = P̄(s)ui(s). (1)

We assume that P̄(s) is strictly proper, does not have any unstable
hidden modes, and has no zero at s = 0.

Further, let the desired target separation of the ith vehicle to its
predecessor be denoted by δi(t). Then, the inter-vehicle distance
error is defined as

ei(t) = δi(t) + xi−1(t) − xi(t) (2)

for vehicles i = 1, . . . , n. Since we look at a cyclic formation the
first vehicle is following the last vehicle, i.e. xk = xk+n for all k ∈ N.

The vectors x ≜ (x1, . . . , xn), u ≜ (u1, . . . , un), e ≜ (e1, . . . , en)
and δ ≜ (δ1, . . . , δn), are related by

e(s) = δ(s) − Mx(s) and (3)

x(s) = P̄(s)Iu(s), (4)

where I is the n × n identity matrix and M is a system coupling
matrix, defined as

M ≜

⎡⎢⎢⎣
1 0 . . . 0 −1

−1 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . −1 1

⎤⎥⎥⎦ . (5)

2.2. Controller

For the system described in the previous section we will con-
sider a multi-variable controller which is built upon a scalar con-
troller K̄ (s) that stabilises P̄(s) and a control couplingmatrixΓ . Thus,
the input of the plant can be computed by

u(s) = K̄ (s)Γ e(s), (6)

where e(s) is defined in (3). Wewill use ẽi(s) to denote the ith entry
of Γ e(s).

The control coupling matrix Γ defines what measurements
each vehicle can utilise to implement the control action. In this
paper, we consider a cyclic control structure where each vehicle
can use the relative distance to its r predecessors and followers.
Unlike in other literature, for example Middleton and Braslavsky
(2010), we allow the measurements to be weighted. This is a
significant variation, as it not only allows the implementation of
asymmetric control, but also gives the controller the freedom to
choose the importance of the information. We will explain the
used weighting in detail in Section 2.4 and see in the remainder
of the paper its impact on the platoon. We will next inspect the
interconnected system and representation thereof.

2.3. Interconnected system

We allow an output disturbance wo to act on the system as
shown in Fig. 1. Then, from (3) to (6) we find that the inputs of
the networked system relate to the output by

x(s) = (I + L(s)Γ M)−1wo(s)
+(I + L(s)Γ M)−1L(s)Γ δ(s) (7)
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