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a b s t r a c t

This paper develops and analyses a novel method for identifying Wiener–Hammerstein models, i.e.
models consisting of two linear dynamic parts with a static non-linearity in between. Starting from the
best linear model, which is a consistent estimate of the system dynamics for Gaussian excitation, the
identification problem includes the partitioning of the poles and zeros between the two linear parts. This
partitioning can be formulated as a discrete optimization problem. The fractional approach considers a
relaxation of this problem into a continuous one, by parameterizing the partition of each pole and zero
in a fractional way, and carrying out the computations in the frequency domain. In this paper it is shown
that the fractional approach becomes ill-conditioned for some configurations of the poles and zeros of the
linear dynamic parts, causing identifiability issues. A modification of the original fractional approach is
then introduced, based on series expansion of the fractional transfer functions. This modification shares
most of the properties of the fractional approach. However, it is shown that it provides an implicit
regularization of the identification problem. It addresses the ill-conditioning problem while preserving
meaningful statistical properties of the estimation. Furthermore, a lifted formulation of the estimation
problem is proposed, which improves the algorithmic performance in the framework of Newton-based
methods.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Linear models are often used in system identification due to
their simplicity, and because they allow for simple and systematic
analysis of the properties of the resulting model. Moreover, the
theory underlying the identification of linear systems is fairly
mature, and well covered in the literature. E.g., Ljung (1999) and
Söderström and Stoica (1988) focus on time-domain methods and
Pintelon and Schoukens (2001) focus on frequency-domain meth-
ods. However, real systems are non-linear to some extent, and jus-
tify the need for more advancedmodels. General non-linear model
structures, such as Volterra series or neural networks combined
with dynamical models can approximate almost any non-linear
system. However, they often yield overly flexiblemodel structures,
which are prone to over-fitting, often hard to analyse, and difficult
to deploy in practice. A more structured approach is to limit the
flexibility of the model by considering block-oriented modelling
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based on combining blocks that are either linear dynamic sys-
tems or static nonlinear functions, (Giri and Bai, 2010; Lauwers,
Schoukens, Pintelon, Moer, and Gomme, 2007). Constraining the
dynamic part of the model to be linear still allows to deploy some
aspects of the linear system theory to analyse themodel properties.
The simplest block-oriented models are the Hammerstein model,
consisting of a static non-linearity followed by a linear dynamic
block, and the Wiener model, where the two blocks are in the re-
versed order. Thesemodels can be generalized into Hammerstein–
Wiener (HW)models, which have two static nonlinear blocks with
a linear dynamic block in between, and Wiener–Hammerstein
(WH) models with two linear blocks with a static nonlinear block
in the middle, see Fig. 1.

A Wiener–Hammerstein model is parameterized with parame-
ters describing the two linear parts, e.g. their poles and zeros, and
parameters describing the non-linearity. To estimate the param-
eters it is straightforward to apply the prediction error method
(PEM). It provides a consistent estimate when only measurement
noise affects the system, see Ljung (1999) and Söderström and
Stoica (1988). However, the cost function underlying the PEM can
have multiple minima and an iterative search of the minimum is
required. This difficulty is e.g. pointed out in Wills and Ninness
(2012) where PEM is used to a Wiener–Hammerstein benchmark
problem starting from random chosen poles and zeros. The ex-
istence of local minima entails that the initial guess provided
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Fig. 1. The Wiener–Hammerstein system consists of the interconnection of a first
LTI part GW , a static nonlinearity f , and a second LTI part GH . It is assumed that
the output of the system is corrupted by measurement noise e(t). The intermediate
signals v(t) and w(t) are not measurable.

to the optimization algorithm is crucial for the success of the
identification.

Many approaches to obtain an initial guess for the parameters
rely on the fact that the Best Linear Approximation (BLA) is a
consistent estimate of the concatenation of the two linear dynamic
blocks, when the input belongs to the Riemann equivalence class
of asymptotically normally distributed signals (Enqvist & Ljung,
2005; Pintelon & Schoukens, 2001). An extensive study on block-
oriented approaches based on the BLA can be found in Schoukens
and Tiels (2016). Therefore, the problem of retrieving a good initial
guess for the parameters of the two linear parts is reduced to
a partition problem, where it is required to correctly divide the
dynamics contained in the BLA between the two linear parts. In
Sjöberg and Schoukens (2012), an exhaustive search approach is
suggested where all possible partitionings are considered. This ap-
proach appears to be computationally tractable for the partitioning
problem up to models of order 10. Indeed, since the static non-
linearity is linearly parameterized, estimating the non-linearity
for a given partition of the poles and zeros requires solving a
small-scale Linear Least Squares (LLS) problem. Nevertheless, the
computational burden of the exhaustive search approach increases
dramatically for large systems. Several alternatives have been pro-
posed in the literature. In Sjöberg, Lauwers, and Schoukens (2012),
the linear parts are parameterized via basis functions. The poles
of the BLA are used to define the basis functions of the first linear
part and the zeros are used to build the inverse of the second
linear part. The model structure is over-parameterized in the first
stage, and the fitting of the parameters is done by filtering the
input through the first linear part and the output through the
inverse of the second linear part. An SVD is then used to perform
a model reduction. Unfortunately, this method does not allow any
right half-plane zeros, and the resulting estimation is biased as the
measurement noise is filtered by the poles.

An alternativemethod, labelled fractional approach, is presented
in Vanbeylen (2014). The method describes both linear systems
as the BLA, and integer exponents in the set {0, 1} are introduced
for every pole/zero for describing the partition between the two
linear parts. A relaxation of the set {0, 1} to the continuous interval
[0, 1] is then performed. The resulting real-valued exponents can
then be identified via a continuous optimization problem. When
all the identified real-valued exponents are close to their integer
values {0, 1}, a partition of the pole or the zero can be decided.
Iterative methods can be used to solve the continuous problem
efficiently. Compared to the methods in Sjöberg et al. (2012)
and Sjöberg and Schoukens (2012), with the fractional approach,
both exhaustive search and over-parameterization are avoided,
and right-half plane zeros are allowed. Furthermore, the original
discrete partitioning problem becomes a continuous one, resulting
in a reduced complexity.

In this paper the estimation of the exponents in the fractional
approach and its identifiability issues are analysed. In general, the
WH model can have identifiability deficiencies in two cases. The
first one occurs when the static non-linearity is close to being
linear; the second, when the BLA has poles and/or zeros near the
origin. The intuitive explanation is obvious for these cases. If the
static block is linear, the placement of the poles and zeros have

no influence on the system output. The same it is true for the
second case, since poles/zeros at the origin corresponds to pure
time shifts. We show that identifiability issues can also arise from
the continuous relaxation of the discrete problem of the fractional
approach.More specifically, the following pole/zero configurations
can lead to ill-conditioning: poles (or zeros) are being close to one
another, and belong to the same linear part; a pole and a zero are
close to one another, and belong to different linear parts.

In the fractional approach, the continuous relaxation of the
set of the integer exponents yields fractional dynamics, which
can be treated via series expansions (Giordano & Sjöberg, 2015).
We propose a novel expansion method, supported by a sound
theoretical framework, which is exact for integer values of the
exponents. This novel expansion naturally introduces a form of
regularization in the estimation problem, which alleviates its po-
tential ill-conditioning. Moreover, since no artificial regularization
is introduced, the identification problem retains a meaningful
description of the (local) statistical properties of the estimation.
Finally, a novel formulation of the identification problem based
on lifting techniques (Albersmeyer & Diehl, 2010) is proposed,
yielding advantageous properties in the resulting continuous op-
timization algorithm, which allow for a faster and more reliable
convergence to the solution when using Newton-type methods.

The paper is organized as follows: Section 2 introduces the
model parametrization for the Wiener–Hammerstein system and
the parameter estimation problem. In Section 3, the fractional ap-
proach is introduced as an initialization algorithm for the estima-
tion problem and its issues are analysed. An expanded formulation
of the fractional approach is introduced in Section 4. In Section 5
the properties of the expanded formulation are presented and
convergence aspects of the identification algorithm are addressed.
Section 6 illustrates the conditioning problem and its solutions via
simulation and experimental examples, and Section 7 concludes
the paper. Appendices A, B, and C contain the proofs of the theo-
rems related to the conditioning and convergence results.

2. Modelling framework and initialization problem

Werecall here the general framework forWHsystem identifica-
tion. First, the Wiener–Hammerstein system and the assumptions
on the data used for estimation are presented. Then the model
parametrization and the estimation problem are introduced. The
need of a good initial estimate is discussed and, finally, the BLA is
formally defined.

2.1. Wiener–Hammerstein system and data

A Wiener–Hammerstein (WH) system is defined, in discrete-
time, as

y0(t) = G0
H (q)w(t), (1a)

w(t) = f (v(t)), (1b)

v(t) = G0
W (q)u(t), (1c)

where q denotes the forward time-shift operator (qx(t) = x(t+1)).
We assume that the measurement data are generated by a WH
system as defined in (1). The input is a realization of a normally
distributed random process and it is known, while the output is
corrupted by additive white Gaussian noise e(t) with zero mean
and variance σ 2

e ,

y(t) = y0(t) + e(t). (2)

The input is persistently exciting, see Ljung (1999), the LTI systems
and the static nonlinearity. A set of N data is assumed to be avail-
able for estimation, {u(t), y(t)}Nt=1. The intermediate signals v(t)
and w(t) are unknown and, hence, not available for identification.
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