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a b s t r a c t

The kernel-based regularization method has two core issues: kernel design and hyperparameter esti-
mation. In this paper, we focus on the second issue and study the properties of several hyperparameter
estimators including the empirical Bayes (EB) estimator, two Stein’s unbiased risk estimators (SURE) (one
related to impulse response reconstruction and the other related to output prediction) and their corre-
sponding Oracle counterparts, with an emphasis on the asymptotic properties of these hyperparameter
estimators. To this goal, we first derive and then rewrite the first order optimality conditions of these
hyperparameter estimators, leading to several insights on these hyperparameter estimators. Then we
show that as the number of data goes to infinity, the two SUREs converge to the best hyperparameter
minimizing the corresponding mean square error, respectively, while the more widely used EB estimator
converges to another best hyperparameter minimizing the expectation of the EB estimation criterion.
This indicates that the two SUREs are asymptotically optimal in the corresponding MSE senses but the EB
estimator is not. Surprisingly, the convergence rate of two SUREs is slower than that of the EB estimator,
and moreover, unlike the two SUREs, the EB estimator is independent of the convergence rate of ΦTΦ/N
to its limit, where Φ is the regression matrix and N is the number of data. A Monte Carlo simulation is
provided to demonstrate the theoretical results.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The kernel-based regularization methods (KRM) from machine
learning and statistics were first introduced to the system identi-
fication community in Pillonetto and De Nicolao (2010) and then
further developed in Chen, Andersen, Ljung, Chiuso, and Pillonetto
(2014), Chen, Ohlsson, and Ljung (2012) and Pillonetto, Chiuso, and
De Nicolao (2011). These methods attract increasing attention in
the community and have become a complement to the classical
maximum likelihood/prediction error methods (ML/PEM) (Chen
et al., 2012; Ljung, Singh, & Chen, 2015; Pillonetto & Chiuso, 2015).
In particular, KRM may have better average accuracy and robust-
ness thanML/PEMwhen the data is short and/or has low signal-to-
noise ratio (SNR).
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There are two core issues for KRM: kernel design and hyperpa-
rameter estimation. The former is regarding how to parameterize
the kernel matrix with a parameter vector, called hyperparameter,
to embed the prior knowledge of the system to be identified, and
the latter is regarding how to estimate the hyperparameter based
on the data such that the resulting model estimator achieves a
good bias–variance trade-off or equivalently, suitably balances the
adherence to the data and the model complexity.

The kernel design plays a similar role as the model structure
design forML/PEMand determines the underlyingmodel structure
for KRM. In the past few years, many efforts have been spent
on this issue and several kernels have been invented to embed
various types of prior knowledge, e.g., Carli, Chen, and Ljung
(2017), Chen (2018a), Chen et al. (2014), Chen et al. (2016), Chen
et al. (2012), Chen and Pillonetto (2018), Dinuzzo (2015), Mar-
conato, Schoukens, and Schoukens (2016), Pillonetto, Chen, Chiuso,
Nicolao, and Ljung (2016), Pillonetto et al. (2011), Pillonetto and
De Nicolao (2010) and Zorzi and Chiuso (2017). In particular, two
systematic kernel design methods (one is from amachine learning
perspective and the other one is from a system theory perspective)
were developed in Chen (2018b) by embedding the corresponding
type of prior knowledge.
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The hyperparameter estimation plays a similar role as the
model order selection in ML/PEM and its essence is to determine
a suitable model complexity based on the data. As mentioned in
the survey of KRM (Pillonetto, Dinuzzo, Chen, De Nicolao, & Ljung,
2014), many methods can be used for hyperparameter estimation,
such as the cross-validation (CV), empirical Bayes (EB), Cp statistics
and Stein’s unbiased risk estimator (SURE) and etc. In contrast
with the numerous results on kernel design, there are however
few results on hyperparameter estimation except Aravkin, Burke,
Chiuso, & Pillonetto (2012a, b, 2014), Chen et al. (2014) and Pil-
lonetto & Chiuso (2015). In Aravkin et al. (2012a, b, 2014), two
types of diagonal kernel matrices are considered. When ΦTΦ/N
is an identity matrix, whereΦ is the regressionmatrix and N is the
number of data, the optimal hyperparameter estimate of the EB
estimator has explicit form and is shown to be consistent in terms
of the mean square error (MSE). When ΦTΦ/N is not an identity
matrix, the EB estimator is shown to asymptotically minimize a
weighted MSE. In Chen et al. (2014), the EB with linear multiple
kernel is shown to be a difference of convex programming problem
and moreover, the optimal hyperparameter estimate is sparse. In
Pillonetto and Chiuso (2015), the robustness of the EB estimator is
analysed.

In this paper, we study the properties of the EB estimator and
two SUREs in Pillonetto and Chiuso (2015) with an emphasis on
the asymptotic properties of these hyperparameter estimators. In
particular, we are interested in the following questions: When the
number of data goes to infinity,

(1) what will be the best kernel matrix, or equivalently, the best
value of the hyperparameter?

(2) which estimator (method) shall be chosen such that the
hyperparameter estimate tends to this best value in the
given sense?

(3) what will be the convergence rate of that the hyperparame-
ter estimate tends to this best value? and what factors does
this rate depend on?

In order to answer these questions, we employ the regularized
least squaresmethod for FIRmodel estimation in Chen et al. (2012).
As a motivation, we first show that the regularized least squares
estimate can have smaller MSE than the least squares estimate for
any data length if the kernelmatrix is chosen carefully.We thende-
rive the first order optimality conditions of these hyperparameter
estimators and their corresponding Oracle counterparts (relying
on the true impulse response, see Section 3.2 for details). These
first order optimality conditions are then rewritten in a way to
better expose their relations, leading to several insights on these
hyperparameter estimators. For instance, one insight is that for
the Oracle estimators, for any data length, and without structure
constraints on the kernel matrix, the optimal kernel matrices are
same as the one in Chen et al. (2012) and equal to the outer product
of the vector of the true impulse response and its transpose. More-
over, explicit solutions of the optimal hyperparameter estimate
for two special cases are derived accordingly. Then we turn to the
asymptotic analysis of these hyperparameter estimators. Regard-
less of the parameterization of the kernel matrix, we first show
that the two SUREs actually converge to the best hyperparameter
minimizing the corresponding MSE, respectively, as the number
of data goes to infinity, while the more widely used EB estimator
converges to the best hyperparameter minimizing the expectation
of the EB estimation criterion. In general, these best hyperparam-
eters are different from each other except for some special cases.
This means that the two SUREs are asymptotically optimal in the
corresponding MSE senses but the EB estimator is not. We then
show that the convergence rate of two SUREs is slower than that
of the EB estimator, and moreover, unlike the two SUREs, the EB

estimator is independent of the convergence rate of ΦTΦ/N to its
limit.

The remaining parts of the paper is organized as follows. In
Section 2, we recap the regularized least squares method for FIR
model estimation and introduce two types of MSE. In Section 3,
we introduce six hyperparameter estimators, including the EB es-
timator, two SUREs, and their corresponding Oracle counterparts.
In Section 4,we derive the first order optimality conditions of these
hyperparameter estimators and put them in a form that clearly
shows their relation, leading to several insights. In Section 5, we
give the asymptotic analysis of these hyperparameter estimators,
including the asymptotic convergence and the corresponding con-
vergence rate. In Section 6, we illustrate our theoretical results
with Monte Carlo simulations. Finally, we conclude this paper in
Section 7. All proofs of the theoretical results are postponed to
Appendix A.

2. Regularized least squares approach for FIRmodel estimation

2.1. Regularized least squares and two types of MSEs

Consider a single-input single-output linear discrete-time in-
variant, stable and causal system

y(t) = G0(q)u(t) + v(t), t = 1, . . . ,N (1)

where t is the time index, y(t), u(t), v(t) are the output, input
and disturbance of the system at time t , respectively, G0(q) is the
rational transfer function of the system and q is the forward shift
operator: qu(t) = u(t + 1). Assume that the input u(t) is known
(deterministic) and the input–output data are collected at time
instants t = 1, . . . ,N , and moreover, the disturbance v(t) is a zero
mean white noise with finite variance σ 2 > 0. The problem is to
estimate amodel forG0(q) aswell as possible based on the available
data {u(t − 1), y(t)}Nt=1.

The transfer function G0(q) can be written as

G0(q) =

∞∑
k=1

g0
k q

−k (2)

where g0
k , k = 1, . . . ,∞ form the impulse response of the system.

Since the impulse response coefficients {g0
k } of the stable ratio-

nal transfer function G0(q) decay exponentially, it is possible to
truncate the infinite impulse response at a sufficiently high order,
leading to the finite impulse response (FIR) model:

G(q) =

n∑
k=1

gkq−k, θ = [g1, . . . , gn]T ∈ Rn. (3)

With the FIR model (3), system (1) is now written as

y(t) = φT (t)θ + v(t), t = 1, . . . ,N

where φ(t) = [u(t −1), . . . , u(t −n)]T ∈ Rn, and its matrix–vector
form is

Y = Φθ + V , where (4)

Y = [y(1) y(2) · · · y(N)]T

Φ = [φ(1) φ(2) · · · φ(N)]T

V = [v(1) v(2) · · · v(N)]T .

The well-known least squares (LS) estimator

θ̂ LS
= argmin

θ∈Rn
∥Y − Φθ∥

2 (5a)

= (ΦTΦ)−1ΦTY (5b)

where ∥ · ∥ is the Euclidean norm, is unbiased with respect to the
FIR model (4) but may have large variance and mean square error
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