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a b s t r a c t

This paper investigates the stabilization problem of linear systems with distributed infinite input delays.
By introducing a stability result on systems with infinite delays, it is shown that a stabilizable linear
system with distributed infinite input delays can be globally asymptotically stabilized with low gain
controllers as long as the open-loop system is not exponentially unstable. Our result includes constant
delay and bounded distributed delay as its special cases. It should be noted that the stabilization problem
of systems with distributed infinite input delays, to our best knowledge, has not been considered in
existing literatures. Simulation examples are provided to illustrate the effectiveness of our theoretical
results.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the stabilization problem of the fol-
lowing linear systems with distributed infinite delay in the input:

ẋ(t) = Ax(t) +

∫
+∞

0
B(η)u(t − η)dη,

x0(θ ) = φ(θ ), θ ∈ (−∞, 0], (1)

where x ∈ Rn is the state, u ∈ Rm is the control input, B(η) is
a matrix function whose elements are all Lebesgue integrable on
[0,+∞). In this study, the distributed infinite delay is formulated
by the integral over all past time of the history of the input. The
matrix function B(η) is the coupling of the system matrix and the
delay kernel.

Time-delay systems have been extensively studied for the past
decades, see, for example Cao, Lin, and Hu (2002), Chen and Latch-
man (1995), Gu, Chen, and Kharitonov (2003), Hale and Lunel
(2013), Niculescu (2001), Richard (2003),Wu and Zheng (2009a, b)
and Xu, Feng, Zou, and Huang (2012) and the references therein. In
practical systems, time delays are inherent features and are often
the main cause for instability and poor performance. Time-delay
systems are usually very challenging to deal with mainly because
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they belong to infinite dimensional FDEs (functional differential
equations). Distributed delays, as one of the most common types,
have received considerable attention in control community. The
stability or stabilization problems of systems with distributed de-
lays have beenwidely considered, see, for example Chen and Zheng
(2006, 2007), Olbrot (1978), Xu and Chen (2004), Wu, Shi, Gao, and
Wang (2009) and Xie, Fridman, and Shaked (2001).

However, all aforementioned works on time delayed systems
consider bounded time delays. Infinite delay, also known as un-
bounded delay, is muchmore general but also muchmore difficult
to deal with. There are two typical types of infinite delays, that
is, time-varying infinite delays and distributed infinite delays. In
this study, we focus on distributed infinite delays, which have
been considered in many practical systems, such as the HIV-
spread model (Culshaw, Ruan, & Webb, 2003), the modelling of
oscillators (Atay, 2003), the modelling of traffic flow (Sipahi, Atay,
& Niculescu, 2007), the analysis of neural networks (Liao, Li, &
Chen, 2004). It is however worth pointing out that the stabiliza-
tion problem for systems with distributed infinite delays, to our
best knowledge, has not been considered so far. Systems with
distributed infinite delays, compared with bounded ones, present
challenges in three aspects. First, tools for addressing infinite
delays are quite limited. Many stability or stabilization results
have been developed for systems with bounded delays via using
methods of the Lyapunov–Razumikhin functions, the Lyapunov–
Krasovskii functionals and the frequency-domain criteria. How-
ever, the conditions of those existing results cannot be satisfied
when time delays become infinite. In other words, those results
cannot be applied to the case of infinite delays directly. Therefore,
extended versions of those methods or new methods need to be
developed in order to analyse infinite delayed systems. Second, the
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solutions in the case of infinite delays are sensitive to the initial
conditions as their dynamics always contain a part of the initial
functions. Thus the proper definition of initial conditions is critical,
which is different from the bounded delay cases. Last but not least,
since there is no bound for scaling the integrals relevant to infinite
timedelays, the proofs for stability or stabilization of the concerned
systems are much more complex and difficult in general.

In this paper, we concentrate on the stabilization problem for
systems with distributed infinite input delays. Input delays, which
are often caused by transmission of the control signal, have been
studied widely (Bekiaris-Liberis & Krstic, 2011; Fang & Lin, 2006;
Krstic, 2010; Lin & Fang, 2007; Zhou, Gao, Lin, & Duan, 2012; Zhou,
Lin, & Duan, 2012). Low gain feedback has proved to be effective
to solve the stabilization problem of linear systems with bounded
input delays, including constant delays (Lin& Fang, 2007), bounded
distributed delays (Zhou, Gao et al., 2012) and bounded time-
varying delays (Zhou, Lin et al., 2012). Details of low gain feedback
canbe found in Lin (1999, 2009). However, the lowgain approaches
used in the aforementioned literatures cannot be utilized to deal
with the case of infinite input delays as the design of low gain
parameters in those papers depends on the bounds of delays,
which do not exist in the case of infinite delays. By utilizing a
different low gain approach, two low gain feedback controllers are
proposed in this paper for two different classes of linear systems
with distributed infinite input delays respectively, one class with
their unstable or marginally stable eigenvalues on the imaginary
axis and the other class with their unstable or marginally stable
eigenvalues at the origin. It is shown that both classes of linear sys-
tems can be globally asymptotically stabilized with the proposed
low gain feedback controllers respectively, while the controller for
the second class is of a simpler form.

Our main contributions can be summarized into the following
four aspects. First, our work, to our best knowledge, is the first at-
tempt at solving the stabilization problem of systems with infinite
input delays. Second, it is shown that the low gain approach is also
effective to the case of distributed infinite input delays. It should be
noted that the techniques used in this work are very different from
those in Lin and Fang (2007), Zhou, Gao et al. (2012) and Zhou, Lin,
and Duan (2010) though the similar low gain feedback controllers
are adopted. In contrary to the aforementioned papers which use
the time domain low gain approach, the frequency domain low
gain approach is used in our paper. Third, noting that most of the
existing stability result cannot be applied to infinite delay cases
directly, a new stability result, which can be seen as the extension
of the frequency domain method, is utilized to establish our main
results. In addition, an important property of low gain feedback
is revealed and proved with which our main results can thus be
established. Last but not least, our results include some of the
existing results on constant delays and bounded distributed delays
as their special cases, see for example Lin and Fang (2007), Zhou,
Gao et al. (2012) and Zhou et al. (2010).

The rest of this paper is organized as follows. In Section 2, some
preliminaries are provided, including the definition of stability and
a stability result on systemswith infinite delays introduced in Hale
(1974). Our main results are presented in Section 3. Simulation
examples are presented in Section 4 and conclusions are drawn in
Section 5. Some technical details can be found in the Appendix.

Notations: Throughout this paper, the following notations are
used. R and C are the sets of real and complex numbers, respec-
tively. Rn and Cn denote the sets of n-dimensional real and com-
plex vectors, respectively. Rn×m and Cn×m denote the sets of n×m
real and complex matrices, respectively.C−,C+,C−,C+ represent
the open left half, the open right half, the closed left half and
the closed right half of complex plane, respectively. jR represents
the imaginary axis. ∥ · ∥ denotes any vector or matrix norm. The
notation |·| can represent the absolute value for real numbers, the

module for complex numbers, the Euclidean norm for vectors or
the subordinate 2-norm for matrices. σ (·) is the spectrum of a
matrix. The notation det{·} means the determinant of a matrix. I
represents the identity matrix with appropriate dimension.

2. Preliminaries

2.1. Stability definition for systems with infinite delays

In this subsection, we extend the concepts of stability so that
systems with infinite delays can be included. Suppose 0 ≤ r ≤

+∞ is given. If r = +∞, then [−r, 0] = (−∞, 0]. For any t ≥ 0,
let xt : [−r, 0] → Rn be defined by xt (θ ) = x(t + θ ), θ ∈ [−r, 0],
B = B([−r, 0],Rn) be the Banach space of functions defined on
[−r, 0] equipped with norm ∥ · ∥B and xt ∈ B. Consider the
following time delayed system

ẋ(t) = f (xt ), t ≥ 0
x0(θ ) = φ(θ ), θ ∈ [−r, 0], (2)

where the operator f : B → Rn is continuous and bounded with
f (0) = 0 and φ = xt |t=0 ∈ B is the initial condition.

Remark 1. Let C([−r, 0],Rn) denote the Banach space of continu-
ous functions defined on [−r, 0]. One first considers the case that
r < +∞, which implies that the delay is bounded. Because the
solution x(t) is continuous for all t ≥ 0, after one delay interval r ,
therewill always be xt ∈ C([−r, 0],Rn) for t ≥ r . Though the initial
condition φ = xt |t=0 ∈ B could be discontinuous, by choosing a
new initial time r and a new initial condition φ′

= xt |t=r , there is
always φ′

∈ C([−r, 0],Rn). Then the new system

ẋ(t) = f (xt ), t ≥ r
xr (θ ) = φ′(θ ), θ ∈ [−r, 0], (3)

where xt ∈ C([−r, 0],Rn), is equivalent to system (2). There-
fore, the space B is often chosen, without loss of generality, as
C([−r, 0],Rn) if r < +∞. However, when r = +∞, which
implies the delay is infinite, xt will always contain a part of the
initial condition for any t > 0. Hence, we cannot assume that
B = C((−∞, 0],Rn). These discussions show that the choice of the
initial condition φ and the space B is critical in the case of infinite
delays. As a result of this, new definitions and results are required
for discussing stability of systems with infinite delays.

The definition of stability of system (2) is formally given as
follows.

Definition 1 (Kato, 1978). The zero solution of system (2) is said to
be

(1) stable if for any ε > 0, there exists δ(ε) > 0 such that

∥φ∥B < δ(ε) implies |x(t)| < ε.

(2) asymptotically stable if in addition to stability, there exist
δ0 > 0 and T = T (ε) > 0 of ε such that

∥φ∥B < δ0 and t ≥ T implies |x(t)| < ε.

(3) globally asymptotically stable if in addition to stability, for
any ε > 0 and any φ ∈ B, there exists T = T (ε) > 0 such that

t ≥ T implies |x(t)| < ε.

2.2. A stability result on systems with infinite delays

It should be noted that most of the existing stability results
are developed to solve the bounded delay case, i.e., r < +∞ in
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