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a b s t r a c t

The reachability analysis problem of Max Plus Linear (MPL) systems has been properly solved using the
Difference-Bound Matrices approach. In this work, the same approach is considered in order to solve the
reachability analysis problem of MPL systems subjected to bounded noise, disturbances and/or modeling
errors, called uncertain MPL (uMPL) systems. Moreover, using the results on the reachability analysis of
uMPL systems, we solve the conditional reachability problem, herein defined as the support calculation of
the probability density function involved in the stochastic filtering problem.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Discrete event systems subject to only synchronization and
time delay phenomena are a class of dynamic systems which can
be described in a linear way in the max-plus algebra. The max-
plus algebra is an idempotent semiring, an algebraic structure also
called dioid (Baccelli, Cohen, Olsder, & Quadrat, 1992), in which
the operations of sum (⊕) and product (⊗) are defined as themax-
imization and addition, respectively. Synchronization phenomena
are modeled thanks to maximization: the start of a task waits for
the completion of the preceding tasks, while the delay phenomena
are depicted thanks to the classical sum: the completion time of
a task is equal to the starting time plus the task duration. The
Max Plus Linear (MPL) equations are used to model manufacturing
systems, telecommunication networks, railway networks, and par-
allel computing (Baccelli et al., 1992; Brunsch, Raisch, & Hardouin,
2012). The linearity property has advantaged the emergence of
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a specific theory for the performance analysis (Heidergott, Ols-
der, & van der Woude, 2006) and the control of these systems,
e.g., optimal open loop control (Cohen, Gaubert, & Quadrat, 1999;
Lhommeau, Hardouin, Ferrier, & Ouerghi, 2005) and optimal state-
feedback control. Among closed-loop strategies we can cite the
model matching problem (Lhommeau, Hardouin, & Cottenceau,
2003) and the control strategies allowing the state to stay in a spe-
cific state subspace or semimodule (Amari, Demongodin, Loiseau,
& Martinez, 2012; Gonçalves, Maia, & Hardouin, 2016; Katz, 2007;
Maia, Hardouin, Santos-Mendes, & Loiseau, 2011; Necoara, De
Schutter, van den Boom, & Hellendoorn, 2009).

The MPL systems may be subjected to noise and disturbances,
which should be taken into account in order to avoid tracking
error or closed loop instability (van den Boom & De Schutter,
2002). In general, these perturbations are max-plus-multiplicative
and appear as uncertainties in the max plus model parameters.
As a result the system matrices are uncertain. The Stochastic Max
Plus Linear (SMPL) systems are defined as MPL systems where the
matrices entries are characterized by random variables (DiLoreto,
Gaubert, Katz, & Loiseau, 2010; Hardouin, Maia, Cottenceau, &
Lhommeau, 2010; Heidergott, 2006; Olsder, Resing, Vries, Keane,
& Hooghiemstra, 1990; van den Boom & De Schutter, 2002). In this
work, although the probabilistic aspects of the uncertainties are
not considered, we are interested in systems where the uncertain
parameters can vary over a known interval. Formally, we define
the uncertain Max-Plus Linear (uMPL) systems as nondeterministic
MPL systems where, at each event step, the entries of the system
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matrices can, independently, take an arbitrary value within a real
interval (Cechlrov, 2005; Cechlrov & Cuninghame-Green, 2002;
Mykov, 2005).

To assess whether the system reaches a certain state from a set
of initial conditions is of great interest in many applications and
concerns the reachability analysis. In Gazarik,Michael, Kamen, and
Edward (1999) residuation is used to determine if a state is reach-
able from a single initial condition. In Gaubert and Katz (2003), it is
shown that if the initial set is a rational semimodule, the reachable
set is also a rational semimodule. These authors mention that this
set has a ‘‘simple shape’’ and suggest that an efficient numerical
method remains to be designed. In Lu et al. (2012), reachability
analysis of timed automata is tackled by considering max-plus
polyhedra, a more general class of set than semimodules. For a
more exhaustive presentation onmax-plus polyhedra, see Allami-
geon, Gaubert, and Goubault (2008). In Adzkiya, De Schutter, and
Abate (2014b) the forward reachability problem for autonomous
MPL systems is addressed by considering as initial set, the union of
regions depicted as Difference Bound Matrices (DBM) (Dill, 1990).
In Adzkiya, De Schutter, and Abate (2014a), backward reachability
analysis has also been studied by considering the DBM approach.
In Adzkiya, De Schutter, and Abate (2015), these results have been
extended to nonautonomous MPL systems.

As shown in Adzkiya et al. (2014b), to describe an MPL sys-
tem by means of DBM it is necessary to express it as a Piece-
Wise Affine (PWA) system. This is always possible (Heemels, De
Schutter, & Bemporad, 2001) and it is done by partitioning the
state space into regions in which the system can be modeled by
affine equations (in classical algebra). The PWA system is simply
the union of these affine systems and the key point is that each
affine system and its corresponding active state space region can
be independently represented by one DBM. Themain advantage of
this representation is the existence of many efficient algorithms
for DBM manipulation and its drawback is the upsizing of the
representation of an MPL system from one compact state equation
tomultiple DBM. It should be remarked that, on one hand, Adzkiya
, De Schutter et al. (2015) have proved that any region described as
amax-plus polyhedron can also be described by a union ofDBM.On
the other hand, the complexity of the algorithms involving max-
plus polyhedra are in general polynomial, while the complexity
of the DBM approach critically depends on the number of PWA
subsystems, which grows exponentially with the dimension of the
system. Due to the exponential complexity, the DBM approach
comfortably handles reachability computations for MPL models
with up to twenty state variables, see Adzkiya , De Schutter et al.
(2015, Sec. 5). Approaches based on max-plus polyhedra seems to
be a promising way to reduce the complexity of reachability com-
putations for MPL systems and, therefore, to extend the dimension
of the addressable problem. However, to the best of the authors’
knowledge, there are no approaches based onmax-plus polyhedra
for solving the forward and the backward reachability problem for
general MPL systems and such methods remain to be designed.

In this work, we aim to extend the DBM approach in order
to analyze uMPL systems. It is shown that uMPL systems can be
partitioned into components that can be fully represented by DBM
and that it is efficient for reachability analysis of uMPL systems.
Then, for the forward reachability analysis, given a set of initial
conditions represented by a union of finitely many DBM, the sets
of states that may be reached at each event step are computed.
Similarly, for the backward reachability analysis, given a set of final
conditions represented by a union of finitely many DBM, the sets
of all states that may lead to the set of final conditions in a fixed
number of steps can be computed.

Bayesian methods provide a rigorous general framework for
dynamic state estimation problems (Gordon, Salmond, & Smith,
1993). The objective of the Bayesian state estimation is to con-
struct the posterior probability density function (PDF) of the states
based on all information available. It should be noted that the
computation of the states PDF is quite difficult. Although these

problems are very closely related, this paper only concerns the
reachability problem and therefore the purpose is limited to the
calculation of the support of the prior and the posterior state
estimation, which does not require the use of probabilitymeasures
(Section 5). We define the conditional reachability problem as the
support calculation of the posterior PDF of the uMPL system states.
We assume that a sequence of measurements related to the state
through an uMPL equation is given and then we show that this
problem can be solved by using the results on reachability analysis
of uMPL systems.

The paper is organized as follows: Section 2 recalls the MPL
systems and their decompositions as PWA systems, as well as the
DBM representation of PWA systems generated by MPL systems.
Section 3 extends the DBM approach to uMPL systems. Section 4
presents reachability analysis for uMPL systems. Section 5 deals
with the conditional reachability problem. Section 6 applies the
results of the paper in order to solve the conditional reachability
problem for a given uMPL system. Finally, Section 7 concludes the
work.

2. Preliminaries

2.1. Max plus linear systems

A set S, endowed with two internal operations: sum(⊕) and
product(⊗) is a dioid or idempotent semiring if the sum is as-
sociative, commutative and idempotent (i.e. a ⊕ a = a) and the
product is associative and left and right distributive with respect
to the sum.1 The null (or zero) element, denoted by ε, is such that
∀a ∈ S, a⊕ ε = a, and the identity element, denoted by e, is such
that ∀a ∈ S, a ⊗ e = e ⊗ a = a. Besides, the zero element is
absorbing for the ⊗ operation (i.e. ∀a ∈ S, a ⊗ ε = ε ⊗ a =
ε) (Baccelli et al., 1992Def. 4.1). In this algebraic structure, a partial
order relation is defined by:

a ⪰ b⇔ a = a⊕ b. (1)

Given these conditions, it appears that the set R ∪ {−∞} ∪ {∞}
and the operations:α ⊕ β ≡ max{α, β} and α ⊗ β ≡ α + β, with
ε = −∞, e = 0, and with the convention that∞ ⊗ ε = ε, is a
dioid. Moreover, it can be stated that this is a complete dioid since
it is closed for infinite sums and the left and right distributivity
of the product extends to infinite sums2 . This set is called Max-
Plus semiring and noted by Rmax. The ⊕ and ⊗ operations can be
extended tomatrices as follows. If A, B ∈ Rn×p

max and C ∈ Rp×q
max , then:

[A⊕ B]ij = aij ⊕ bij and [A⊗ C]ij =
⨁p

k=1aik ⊗ ckj.
The autonomous model of an MPL system is given by:

x(k) = A⊗ x(k− 1), (2)

where the entries of matrix A ∈ Rn×n
max are the parameters of the

model, aij represents the minimal delay between two events. The
variable k ∈ N is an event-number and the state vector x ∈ Rn

max is
a dater, i.e., x(k) contains the kth date of occurrence of each event
of the system.

The nonautonomous model of an MPL system is defined as:

x(k) = A⊗ x(k− 1)⊕ B⊗ u(k), (3)

where u is an external input and B ∈ Rn×m
max .

Any nonautonomous MPL system can be transformed into an
augmented autonomous MPL model by considering F = (A B) ∈
Rn×(n+m)

max and y(k − 1) =
(
x(k− 1)T u(k)T

)T (Baccelli et al., 1992
Sec. 2.5.4).

x(k) = F ⊗ y(k− 1). (4)

1 The product is not necessarily commutative.
2 For complete dioids, the order relation (1) can be written as: a ⪰ b ⇔ a =

a⊕ b⇔ b = a ∧ b, where a ∧ b is the greatest lower bound of a and b.



Download English Version:

https://daneshyari.com/en/article/7108364

Download Persian Version:

https://daneshyari.com/article/7108364

Daneshyari.com

https://daneshyari.com/en/article/7108364
https://daneshyari.com/article/7108364
https://daneshyari.com

