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1. Introduction

In this paper, we consider the following class of uncertain
cascade systems with an unknown time-delay

z = folz, z(t — d), x1, x1(t — d), )
).(1 = X3 +f1(Z,Z(t — d),Xl,X1(l' — d), 9)

X1 =X +foa(z, z(t —d), xq, ... X1,
xi(t —d), ..., x_1(t —d),0)
kr =1u ‘l‘fr(za Z(t - d)7 X, X(t - d)9 9)7

zZ(s) = &(s), x(s) = u(s), se[-d,0] (1)

where x = [x1, ..., %] € R is the measurable state,z € R* " is
the unmeasurable state, u € R is the control input and 6 € R® is
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the unknown constant parameter. The constant d > 0 represents
an unknown time-delay of the system, {(s) € R"™" and u(s) € R’
are continuous functions defined on [—d, 0], fo : R x R"" x
RxRxR — R"7andf; : R"" x R"" x Rl x R' x R® — R
are C! mappings with fy(0, 0, 0,0, 0) = 0 and f(0, 0,0, 0, 0) = 0,
Vo € R.

When no time-delay exists in the controlled plant (i.e., d = 0),
global adaptive regulation of the cascade system (1) with unknown
parameters has been investigated by partial state feedback; see,
for instance, Lin and Pongvuthithum (2003) and the references
therein. A globally stabilizing adaptive controller was designed
by means of changing supply rate (Sontag & Teel, 1995) and the
feedback domination method (Lin & Qian, 2002; Qian & Lin, 2001a).
The domination design (Lin & Qian, 2002; Qian & Lin, 2001a) has
provided an effective tool for dealing with nonlinear parameteriza-
tion without requiring convex/concave or linear parameterization
conditions.

The goal of this paper is to show that using the dynamic
gain-based design (Zhang & Lin, 2014; Zhang, Lin, & Lin, 2017b),
together with the feedback domination control method (Lin &
Pongvuthithum, 2003; Lin & Qian, 2002), one can find, under a
suitable condition on the z-subsystem of (1), a delay-free, dy-
namic partial-state adaptive controller (using only the measurable
state x)

L=vil,0,x), LeR !,
6 =YL, 0,x), O €eR,
u=B(L 6,x), (2)
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globally regulating the time-delay cascade system (1) with un-
known parameters. That is, the state (z, x) of the cascade system
(1) can be steered to the origin while maintaining boundedness of
the closed loop system (1)-(2), where ¥ : R"™™! x R x R" — R'~!
is a continuous function and ¥, : R™™! x R x R" — R and
B : R~ xRxR" — Raresmooth functions, with v,(0, 0, 0) = 0,
¥,(0,0,0) = 0and B(0,0,0) = 0.

Time-delay phenomena can be found in a variety of applications
and physical systems such as chemical processes, networked con-
trol systems, communication-based systems and biological sys-
tems. To address control problems of time-delay systems, various
analysis and synthesis approaches have been developed in the
literature. Among them, the Lyapunov-Krasovskii and Lyapunov-
Razumikhin methods are two powerful tools in the stability analy-
sis of time-delay systems (Gu, Kharitonov, & Chen, 2003; Jankovic,
2001; Pepe, 2014; Richard, 2003). There are primarily three types
of time-delay systems that have received considerable attention.
One class includes the delay in the system state (Hua, Liu, & Guan,
2009; Karafyllis & Jiang, 2010; Nguang, 2000) and the other one
contains the delay in the control input (Bresch-Pietri & Krstic,
2014; Krstic, 2010; Mazenc, Mondie, & Niculescu, 2003). Of course,
a more complex situation involves time-delays in both states and
actuators of controlled plants (Bekiaris-Liberis & Krstic, 2013).
In Mazenc et al. (2003), a saturation controller was proposed for
global asymptotic stabilization of a chain of integrators with a
delay in the input. In Krstic (2010), control of a class of nonlinear
systems with input delay was investigated with the condition that
the system is forward complete. For a strict feedback system with
state delay, an attempt was first made in Nguang (2000) to design
a delay-independent, smooth state feedback controller. Later, it
was found that the paper (Nguang, 2000) is false due to the use
of a circular argument in the static state feedback design. This
problem was partially addressed in subsequent work (Hua et al.,
2009; Karafyllis & Jiang, 2010), and satisfactorily solved in Zhang
and Lin (2014), Zhang, Lin, and Lin (2017a) and Zhang et al. (2017b),
using dynamic instead of static state feedback.

It should be noticed that the afore-mentioned works only con-
centrated on the time-delay systems without zero-dynamics (Hua
et al.,, 2009; Karafyllis & Jiang, 2010; Nguang, 2000; Zhang & Lin,
2014; Zhang et al., 2017b) and unknown parameter (Zhang et al.,
2017a). The purpose of this paper is to move beyond the time-delay
systems with trivial zero-dynamics and uncertainty whose bound
is known, by studying the adaptive control problem for the time-
delay cascade system (1) with unknown parameters. In this work
we focus our attention on the first category of time delay problems,
namely, the class of cascade systems under consideration contains
only delays in the state. The main contribution of this paper is to
prove that under a suitable condition on the zero-dynamics, global
adaptive regulation of the time-delay cascade system (1) with
parameter uncertainty is possible by a delay-independent, dynamic
partial state adaptive controller. A delay-free, dynamic partial state
adaptive control law can be designed recursively, by using the
dynamic gain-based design approach (Zhang & Lin, 2014; Zhang
et al., 2017b), coupled with the adaptive control strategy for non-
linearly parameterized systems (Lin & Pongvuthithum, 2003; Lin
& Qian, 2002) and the idea of changing supply rate (Sontag & Teel,
1995). Another worth-mentioning contribution (may find useful in
other applications) is the construction of appropriate Lyapunov-
Krasovskii functionals involving the dynamic gains, which play an
important role in proving the global stability as well as adaptive
state regulation of the time-delay cascade system with unknown
parameters.

To address the state regulation problem for the time-delay
cascade system (1) with unknown parameters by a delay-free,
adaptive partial state feedback law, we assume that the class of
time-delay cascade systems (1) considered in this paper satisfies
the following condition.

Assumption 1.1. There is a C! Lyapunov function Uy(z), which is
positive definite and proper, such that

U,
a—z"fo(z, 2(t — d), x1, x,(t — d), 0)
< —lzII® + a(x1, x:(t — d), 6), (3)

where a(x1, x;(t —d), 8) is a C? non-negative function with (0, 0,
0)=0V0 € R°.

Assumption 1.1 implies that the z-subsystem is input-to-state-
stable (ISS) when treating (x1, x1(t — d)) as its inputs. When d = 0,
it reduces to an ISS condition for nonlinear cascade systems, under
which the existence of a partial-state feedback law is guaranteed.
It also implies that the zero-dynamics is asymptotically stable and
hence the minimum-phase property. Thus, Assumption 1.1 can be
viewed as a time-delay version of the ISS-like condition for time-
delay cascade systems.

With the aid of Assumption 1.1, we shall prove in the next
section that global adaptive stabilization or regulation of the time-
delay cascade system (1) with parametric uncertainty is solvable
by dynamic partial-state feedback. A non-smooth counterpart of
the result is then presented in Section 3, for a class of time-
delay uncertain systems with strong nonlinearity, which cannot be
controlled by smooth feedback due to the uncontrollable unstable
nature of the linearized system. Conclusions are given Section 4.

Notations: Throughout this paper, for the technical convenience, let
vg denote the time-delay term v(t — d), for example, z; = z(t — d)
and x;g = x;(t — d). Define ¥; = [v1, ..., v]" € Rifori=1,...,r.
Hence, X; = [X1, ..., %17, Xiq = [X1d, ..., Xiq]" and l; = [l, ..., L]".

2. Adaptive regulation by smooth partial-state feedback

To establish the first main result of this paper, we introduce
three lemmas to be used in the next two sections.

Lemma 2.1 (Lin & Qian, 2002). Let x € R,y € R"and f :
R"xR™ — R be a continuous function. Then, there are smooth scalar
functions a(x) > 0, b(y) > 0, c(x) > 1 and d(y) > 1, such that

[f(x, ¥)| < a(x)+ b(y), If(x, ) < c(x)d(y). (4)

Lemma 2.2 (Lin & Pongvuthithum, 2003). For any C! function f :
R™xR" — Rwithf(0, 0) = 0, there exist smooth functions g(x) > 1
and h(y) > 1, such that

S+ 1yl < g@)lixll + h()lyll. (3)

Lemma 2.3 (Lin & Pongvuthithum, 2003). Let o : RXR xR’ — Rbe
a nonnegative C? function with «(0, 0,60) = 0, V6 € R®. Then, there
exist smooth scalar functions bg1(x1, 0) > 0and bgy(x14, 6) > 0, such
that

a(x1, X14, 0) < X7bo1(x1, 0) + Xi4bo2(x14, 0). (6)

Using Lemmas 2.1-2.3, we prove in this section that under As-
sumption 1.1, it is possible to design a delay-independent, dynamic
partial-state adaptive controller of the form (2), which solves the
problem of global adaptive regulation for the nonlinear param-
eterized cascade system (1) with time-delay. The proof and the
construction of a delay-free adaptive control law rely on an effec-
tive coupling of the dynamic gain-based control method (Zhang &
Lin, 2014; Zhang et al., 2017b), the adaptive feedback domination
design (Lin & Qian, 2002) and the idea of changing supply rate for
cascade systems (Sontag & Teel, 1995).
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