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This brief paper provides a comparison of methods for enclosing a given zonotope within another
of lower complexity, commonly called order reduction. These techniques are essential for maintaining
efficiency in recursive computations with zonotopes and are widely used in set-based estimation, hybrid
systems verification, and fault detection. We first review existing methods and provide a new theoretical

analysis of the method recently introduced by Scott et al. (2016). We then compare methods in terms of
computational cost and overestimation error, and investigate the effects of zonotope dimension, initial
order, and reduced order on these metrics. These results provide valuable guidance for the design of robust
estimation and control algorithms that more effectively balance accuracy with computational cost.
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1. Introduction

Since the seminal work of Kiihn (1998), zonotopes have been
widely adopted as an accurate and efficient way to model bounded
uncertainties and noises in a variety of control applications, includ-
ing reachability analysis (Althoff, Stursberg, & Buss, 2008a; Girard,
2005; Kiithn, 1998), state estimation (Bravo, Alamo, & Camacho,
2006; Combastel, 2003, 2005, 2015; Scott, Marseglia, Raimondo,
& Braatz, 2016), hybrid systems verification (Althoff, Stursberg,
& Buss, 2008b, 2010; Girard & Le Guernic, 2008), robust control
(Ocampo-Martinez, Guerra, Puig, & Quevedo, 2007; Raimondo,
Marseglia, Braatz, & Scott, 2013), and fault detection (Ingimundar-
son, Bravo, Puig, Alamo, & Guerra, 2009; Raimondo, Marseglia,
Braatz, & Scott, 2016; Scott, Findeisen, Braatz, & Raimondo, 2014;
Tabatabaeipour, Odgaard, Bak, & Stoustrup, 2012). Zonotopes are
significantly more flexible than parallelotopes and ellipsoids, while
requiring much less computational effort than general convex
polytopes (Scott et al., 2016). However, many operations on zono-
topes yield results with higher complexity than their arguments
(Kiithn, 1998), which is a serious limitation, particularly for recur-
sive algorithms. To address this, order reduction methods bound a
given zonotope within another of lower complexity. These meth-
ods are essential for many control algorithms, and can significantly
impact their efficiency and performance. For example, inaccurate
reduction can lead to overly conservative set-based estimators, and
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hence to conservative control actions or ineffective fault detection
(Althoff et al., 2010; Scott et al., 2016).

Order reduction was first addressed in Kiithn (1998) in the
context of reachability analysis. The first general purpose method
was proposed in Combastel (2003), followed shortly by a similar
method in Girard (2005). These methods (Methods 1 & 2, resp.)
are both very efficient. However, while Method 1 has been over-
whelmingly used in the literature (Bravo et al., 2006; Combastel,
2015; Ocampo-Martinez et al., 2007; Tabatabaeipour et al., 2012),
there are no available studies comparing their accuracy. A more
sophisticated approach was proposed in Althoff et al. (2008b)
(Method 3) and shown to be significantly more accurate than
Method 2, but only for a limited set of tests with low-dimensional
zonotopes (n < 4). Moreover, Method 1 was not compared.
Unfortunately, Method 3 requires a combinatorial search that is
problematic in high-dimensions (see Section 3.3). To address this,
a fourth method was recently proposed in Scott et al. (2016)
(Method 4) that follows the main insights of Method 3 but elimi-
nates the combinatorial search using an iterative matrix factoriza-
tion. It was claimed in Scott et al. (2016) that Method 4 matches the
accuracy of Method 3 at significantly lower cost. However, because
Method 4 was not the focus of that article, it was described only in
the appendix, with no theoretical justification and no comparisons.

This brief paper makes two main contributions. First, Method 4
is presented in detail and its validity is established. Second, a com-
prehensive comparison of Methods 1-4 is presented considering
both computational cost and overestimation error for a large test
set. The effects of problem dimension, initial zonotope order, and
reduced zonotope order are also investigated. The results provide
valuable guidance for designing set-based estimation and control
algorithms that more effectively balance accuracy with computa-
tional cost.
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2. Preliminaries

A zonotope is a convex polytope that can be represented as a
Minkowski sum of line segments, or equivalently as the image of
a unit hypercube under an affine mapping (Kiihn, 1998). Formally,
Z C R" is a zonotope iff

3G, c) e R x R": Z = {GE+¢C: [[]oo < 1. (1)

The vector c is the center, the n, columns of G are the generators,
and (1) is called the generator-representation (G-rep) of Z. We use
the shorthand Z = {G, ¢} C R" to denote zonotopes throughout.
Increasing ng makes zonotopes more flexible, but also more cum-
bersome. The complexity of a zonotope is described by its order,
defined as o = ng/n (Girard, 2005). A first-order zonotope is a
parallelotope if G is full rank and an interval if G is diagonal.

ForZ,Y C R"and R € R™", define the linear mapping and
Minkowsi sum, respectively, as

RZ={Rz:z€Z}, Z+Y={z+y:z€Z, yeY}.

WhenZ = {G;, ¢;} and Y = {Gy, ¢,} are zonotopes, RZ and Z + Y
can be computed exactly as (Kiihn, 1998):

RZ = {RG;,R¢;}, Z4+Y ={[G;Gy],c; +¢,}. (2)

Clearly, this can be done efficiently and reliably, even in high di-
mensions, which is not the case for general convex polytopes (Scott
etal., 2016). However,RZ and Z 4 Y can be higher order than Z and
Y, and this holds for other important operations as well, such as the
convex hull in Girard (2005). This is a major drawback, particularly
when such operations are applied recursively (e.g., Minkowski
sums in state estimation with additive uncertainty Bravo et al.,
2006; Kiihn, 1998).

Given Z = {G,c} C R", order reduction addresses this issue
by finding a lower-order zonotope Z; that contains Z. Ideally,
Zg has minimal overestimation, which can be assessed using the
following volume and Hausdorff error metrics, where v(Z) is the
volume of Z, 1(Z) = max,cz||z— c||; is the radius of Z, and dy is the
Hausdorff distance:

1 1
L2 VB ) o)
v(Z)n r(Z)

Since Z C Zg, the Hausdorff distance is given by

dn(Zg, Z) = maxmin [ly — z|[.
yeZp zeZ

Thus, @y is the maximum distance that a point in Zg can be from
Z, relative to the radius of Z, while ®, measures the volume added
by reduction relative to the volume of Z.

Lemma 1. The volume of Z = {G, ¢} C R" is given by (Bravo et al.,
2006):

v(Z)=2") |detlg,, --- &,]I,

where the sum runs over all combinations of n indices s; from the set
{1,...,ng} and g; is the ith column of G.

Lemma 2. Let Z = {G, ¢} and let Zx = {Gg, cg} be a superset of Z
with ¢g = c. Then,

1(2) = max Gl (4)

[2=

dn(Zg, Z) = ”maleMTGR”l — XTG4 . (5)
b

Proof. Define the support function hz(A) = maxsezA'z. It
follows from a standard duality argument that dy(Zg,Z) =

maxj,=1lhz(X) — hz(X)| (see Lemma 2 in Salinetti and Wets
(1979)). This is equivalent to (5) because, by (1),
hz(A) = max AT(GE 4+ ¢) = |ATG||; + ATe.

00=1

Moreover, (4) follows from (5) because r(Z) is the Hausdorff dis-
tance between Z and the singleton {c}. O

Lemma 3. Let Z = {G, ¢} C R", denote the elements of G by g, and
define d € R" elementwise by d; = Zjlgijl. The interval hull of Z is
given in G-rep by {diag(d), ¢} (Combastel, 2003).

3. Order reduction methods

Let Z = {G, c} be a zonotope with initial order 0, = ng/n. To
reduce Z to order o < ng/n, existing methods all take the following
four steps. First, the columns of G are reordered. It follows from (1)
that this does not affect the set Z. Second, the reordered G matrix is
partitioned as [KL] withK € R™"°~Dand L € R™"¢~=1) From
(2), this corresponds to splitting Z into a sum of two zonotopes,

Z=K+1L, K={K¢c}, L=I{L 0.

Third, L is overapproximated by a first order zonotope Ly = {Lg, 0}
with Lg € R™". Finally, Z is overapproximated by

Zr =K + Lg = {[KLg], c}. (6)

It is readily verified that this eliminates all but n x o generators, as
desired. Methods 1-4 are now described in detail.

3.1. Method 1

Method 1 (Combastel, 2003) chooses Ly as the interval hull of L,
which is easily computed as in Lemma 3. Clearly, it is desirable to
choose L so that the overestimation introduced by taking its inter-
val hull is minimized. Method 1 aims to achieve this by choosing L
as the ng — n(o — 1) shortest generators in G. This is implemented
in Algorithm 1, where the subroutine INTERVALHULL(L) returns
the generator matrix of the interval hull of L. The complexity of
Algorithm 1 is dominated by line 2, with &(nn,) for computing
two-norms and ¢(ng logng) for sorting, for a total of &(ng(n +
log ng)), or &(nog(n + log(noy))).

Algorithm 1 Reduces {G, c} to order o using Method 1
1: procedure REDUCEORDER1(G, 1, 11y, 0)
2: Reorder the columns of G by decreasing two-norm
3 K« Gl:n,l:n(a—l)
4 L« Gl:n,n(u—1)+1:ng
5: Lz < INTERVALHULL(L)
6
7:

return [K  Lg]
end procedure

3.2. Method 2

Method 2 (Girard, 2005) also chooses Lg as the interval hull of
L, but aims to minimize the error by making L interval-shaped.
Specifically, L is chosen as the ny —n(o — 1) generators g; that have
the smallest values of the score

vi = l18illn = lIgjlloo,

which measures how nearly axis-aligned g; is and is zero when g; is
a scaled unit vector. This is implemented exactly as in Algorithm 1
by simply replacing line 2. The complexity is again ¢(ng(n +
logng)) = &(noo(n + log(noo))).
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