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a b s t r a c t

This paper investigates the asymptotic stability of semi-Markov switched stochastic systems. Based on the
method of multiple Lyapunov functions and the structure of semi-Markov process, we provide sufficient
conditions of stochastic asymptotic stability in the large for semi-Markov switched stochastic systems
without the constraint of bounded transition rates. Particularly, our results generalize and improve some
published results in the literature. An example and its simulation are given to illustrate the theoretical
results.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Markov switched systems can be used to model many practi-
cal systems subject to unpredictable changes, and the stability
analysis of Markov switched systems has received considerable
attentions, we refer the readers to Bolzern, Colaneri, and Nicolao
(2006), Chatterjee and Liberzon (2006, 2008, 2012), Dang (2014),
Deng, Luo, and Mao (2012), Faraji-Niri and Jahed-Motlagh (2016),
Kao, Xie, Wang, and Karimi (2015), Kao, Zhu, and Qi (2015), Karimi
(2011), Leth, Schioler, Gholami, and Cocquempot (2013), Mao
and Yuan (2006), Shi and Li (2015), Tanelli, Picasso, Bolzern, and
Colaneri (2010), Zhu (2014) and Zhu, Han, and Zhang (2012). In
such systems, different subsystems are governed by a continuous
time Markov process taking values in a finite state space, and
therefore, the structure of Markov process plays an important role
in the stability analysis of systems. The sojourn time at each state
of Markov process follows exponential distribution, which leads
to the transition rates between different states are constants. It
is a key restriction because in many practical systems, such as
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fault tolerant control systems (see Johnson (1989)), the transition
rates between different modes are time-varying, such a switching
process cannot be modeled as a Markov process.

As a natural and important generalization of Markov process,
the semi-Markov process (see Janssen and Manca (2006) and
Kobayashi, Mark, and Turin (2012)) has time-varying transition
rates. In recent years, some results on the stability analysis of
the corresponding semi-Markov switched systems can be found
in Hou, Luo, and Shi (2005), Hou, Luo, Shi, and Nguang (2006),
Hou, Tong, and Zhang (2009), Huang and Shi (2011), Huang and
Shi (2013), Li, Shi, and Wu (2017), Schioler, Simonsen, and Leth
(2014) and Wei, Park, Karimi, Tian, and Jung (2017). For instance,
by using the phase-type distribution to depict the sojourn time
at each subsystem, Hou et al. (2005, 2006, 2009) studied the
stochastic stability of semi-Markov jump systems. By using the
Weibull distribution to depict the sojourn time at each subsys-
tem, Huang and Shi (2011, 2013) studied the robust stochastic
stability of semi-Markov switched systems with bounded transi-
tion rates. Schioler et al. (2014) studied the moment stability in
the wide sense of semi-Markov switched deterministic systems
without any reference to bounded transition rates. Schioler, Leth,
Simonsen, and Khan (2015) considered the effect of random noise
on the stochastic stability of semi-Markov switched systems and
generalized the results of Schioler et al. (2014), but they assumed
that the sojourn times of unstable subsystems should follow the
exponential distributions (see Lemma 1 of Schioler et al. (2015))
and the sojourn times of all subsystems are upper bounded (see
Lemma 4 of Schioler et al. (2015)). Wei et al. (2017) studied the
stability and stabilization results for time-varying delay stochastic
synchronization of semi-Markovian jump neutral networks with-
out random noise disturbance. Li et al. (2017) presented the novel
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method and studied the stability analysis, robust controller design,
robust filter design and fault detection for the semi-Markov jump
systems in the deterministic case.

However, the above-mentionedworks have imposed some very
strict restrictions on the semi-Markov switched systems. For ex-
ample, in Hou et al. (2005, 2006, 2009), Huang and Shi (2011,
2013) and Schioler et al. (2015), the sojourn time at each state
of semi-Markov switching process was required to follow specific
distribution; In Huang and Shi (2011, 2013), the generator matrix
of semi-Markovian switching process was required to be bounded;
In Li et al. (2017), Schioler et al. (2014) andWei et al. (2017), all the
subsystems were required to be deterministic, and so on.

Motivated by the foregoing discussion, in this paper we investi-
gate the stochastic stability problem for the semi-Markov switched
stochastic systems without the above mentioned restrictions. By
utilizing themethod ofmultiple Lyapunov functions and stochastic
analysis theory, we obtain some sufficient conditions for stochastic
asymptotic stability in the large of semi-Markov switched stochas-
tic systems. Moreover, our results generalize and improve some
published results in the literature, such as Theorem 3.2 in Zhu et
al. (2012) and Theorem 5.37 in Mao and Yuan (2006).

The remainder of this paper is organized as follows. Sec-
tion 2 describes some preliminaries. In Section 3, we obtain suf-
ficient conditions of stochastic stability for semi-Markov switched
stochastic systems via a set of inequalities based on the multiple
Lyapunov functions and the structure of semi-Markov process. In
Section 4, an example is given to illustrate the effectiveness of our
results. Finally, the paper is concluded in Section 5.

Notation. Throughout this paper, Rn and Rn×m denote, respec-
tively, the n-dimensional Euclidean space and the set of n×m real
matrices. R+ denotes the interval [0, ∞), |·| denotes the absolute
value in R and ∥ · ∥ denotes the Euclidean norm in Rn. If A is
a vector or matrix, its transpose is denoted by AT . If A is a real
symmetric matrix, λmin(A) and λmax(A) denote the smallest and
largest eigenvalues, respectively. Let Bδ be the set of {x ∈ Rn

:

∥x∥ < δ}. A function α(·) : R+
→ R+ is said to belong to class

K if it is continuous, strictly increasing and α(0) = 0, it is said to
belong to class K∞ if α(·) ∈ K and α(x) → ∞ as x → ∞. If a, b
are real numbers, then a∨ b denotes the maximum of a and b, and
a ∧ b denotes the minimum of a and b. I(·) denotes the indicator
function.

2. Preliminaries

Let (Ω,F, P) be a complete probability space. In this section,we
first give the definition of semi-Markov process and some related
notions.

Definition 1 (See Hou et al. (2009)). Let S = {1, 2, . . . ,N} be a
finite state space. A stochastic process {r(t), t ≥ 0} is called a semi-
Markov process on the probability space with finite state space S,
if the following conditions hold.

1. The sample paths of {r(t), t ≥ 0} are right-continuous step
functions and have left-handed limits with probability one.

2. Denote the kth jump point of the process r(t) by Tk, k =

0, 1, 2, . . ., where t0 = T0 < T1 < T2 < · · · < Tk < · · · , Tk ↑ +∞,
and the process r(t) possesses Markov property at each Tk, k =

0, 1, 2, . . ..
3. Fij(t) := P(Tk+1 − Tk ≤ t|r(Tk) = i, r(Tk+1) = j) = Fi(t)(i, j ∈

S, t ≥ 0) does not depend on j and k.

Let {Nr (t), t ≥ 0} be the number of switches of r(t) on the
interval (t0, t]. Obviously, for any t ≥ t0, k ≥ 0, Nr (t) = k is
equivalent to t ∈ [Tk, Tk+1), Tk+1 − Tk is the kth sojourn time. Let
τi be the sojourn time in state i ∈ S. By Definition 1, the structure

of semi-Markov process {r(t), t ≥ 0} can be characterized by the
following two notions (see p. 455 of Kobayashi et al. (2012)):

1. The transition probability matrix

PN×N = (pij)N×N , ∀i, j ∈ S, (1)

where pij = P(r(Tk+1) = j|r(Tk) = i) is the probability with
which the process makes a transition from state i to state j at time
Tk+1, k ≥ 0.

2. The set of distribution functions of sojourn times τi, i ∈ S,

Fi(t) := P(τi ≤ t)
= P(Tk+1 − Tk ≤ t|r(Tk) = i), ∀k ≥ 0, (2)

where Fi(t) has continuous differentiable density fi(t).
Throughout the paper, we assume that the switching process

r(t) satisfies the following conditions.

Assumption 1 (See Definition 4.2 of Chatterjee and Liberzon (2008)).
1. The sequence {Tk+1 − Tk, k ≥ 0} is a collection of independent
random variables with E(Tk+1 − Tk) < ∞.

2. The sequence {r(Tk), k ≥ 0} is a discrete-time Markov chain
with transition probability matrix P = (pij)N×N .

3. The sequence {Tk+1 − Tk, k ≥ 0} is independent of {r(Tk), k ≥

0}.

Remark 1. Definition 4.2 of Chatterjee and Liberzon (2008) gave
the definition of class GH, which requires the switching process
r(t) to satisfy not only the items 1, 2, 3 of Assumption 1, but also
the condition: τi, i ∈ S are identical distributed. Although it is not
the most general case, the class GH is a standard hypothesis for
semi-Markov processes. Obviously, Assumption 1 generalizes the
class GH to a certain extent.

Next, we give the notion of generator matrix of semi-Markov
process {r(t), t ≥ 0}. For arbitrary t ≥ 0, let h(t) := t − sup{Tk :

Tk ≤ t, k ≥ 0}. A simple calculation shows that the transition
rates

qij(h) := lim
∆t→0

P(r(t + ∆t) = j|r(t) = i)
∆t

= pij
fi(h)

1 − Fi(h)
, ∀j ̸= i ∈ S, (3)

from state i to another state j(̸= i), and

qii(h) := −

∑
j∈S,j̸=i

qij(h), ∀i ∈ S. (4)

Thus, we get the generator matrix

Λ(h) := (qij(h))N×N , h ≥ 0, (5)

which governs the evolution of semi-Markov process {r(t), t ≥ 0}.
In this paper, we consider the following semi-Markov switched

stochastic system of the form

dx(t) = f (x(t), r(t))dt + g(x(t), r(t))dB(t), (6)
x(t0) = x0 ∈ Rn, r(t0) = r0 ∈ S,

where {r(t), t ≥ 0} is a semi-Markov process, {B(t), t ≥ 0} is
a d-dimensional Brownian motion. For convenience, we let the
initial values x0 and r0 be non-random, namely x0 ∈ Rn and
r0 ∈ S. As a usual, we assume that B(t) and r(t) are independent.
f (·, ·) : Rn

× S ↦→ Rn and g(·, ·) : Rn
× S ↦→ Rn×d. Both f

and g satisfy the local Lipschitz condition and the linear growth
condition. Obviously, these conditions can ensure that system (6)
has a unique solution, andwe denote it by x(t; t0, x0, r0) with initial
condition x(t0) = x0 and r(t0) = r0, or x(t) for simplicity. We also
assume that f (0, i) = 0, g(0, i) = 0 for each i ∈ S. This implies that
system (6) admits a trivial solution x(t) ≡ 0.
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